Metamath Proof Explorer


Theorem pwdjuen

Description: Sum of exponents law for cardinal arithmetic. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion pwdjuen A V B W 𝒫 A ⊔︀ B 𝒫 A × 𝒫 B

Proof

Step Hyp Ref Expression
1 djuex A V B W A ⊔︀ B V
2 pw2eng A ⊔︀ B V 𝒫 A ⊔︀ B 2 𝑜 A ⊔︀ B
3 1 2 syl A V B W 𝒫 A ⊔︀ B 2 𝑜 A ⊔︀ B
4 2on 2 𝑜 On
5 mapdjuen 2 𝑜 On A V B W 2 𝑜 A ⊔︀ B 2 𝑜 A × 2 𝑜 B
6 4 5 mp3an1 A V B W 2 𝑜 A ⊔︀ B 2 𝑜 A × 2 𝑜 B
7 pw2eng A V 𝒫 A 2 𝑜 A
8 pw2eng B W 𝒫 B 2 𝑜 B
9 xpen 𝒫 A 2 𝑜 A 𝒫 B 2 𝑜 B 𝒫 A × 𝒫 B 2 𝑜 A × 2 𝑜 B
10 7 8 9 syl2an A V B W 𝒫 A × 𝒫 B 2 𝑜 A × 2 𝑜 B
11 enen2 𝒫 A × 𝒫 B 2 𝑜 A × 2 𝑜 B 2 𝑜 A ⊔︀ B 𝒫 A × 𝒫 B 2 𝑜 A ⊔︀ B 2 𝑜 A × 2 𝑜 B
12 10 11 syl A V B W 2 𝑜 A ⊔︀ B 𝒫 A × 𝒫 B 2 𝑜 A ⊔︀ B 2 𝑜 A × 2 𝑜 B
13 6 12 mpbird A V B W 2 𝑜 A ⊔︀ B 𝒫 A × 𝒫 B
14 entr 𝒫 A ⊔︀ B 2 𝑜 A ⊔︀ B 2 𝑜 A ⊔︀ B 𝒫 A × 𝒫 B 𝒫 A ⊔︀ B 𝒫 A × 𝒫 B
15 3 13 14 syl2anc A V B W 𝒫 A ⊔︀ B 𝒫 A × 𝒫 B