Metamath Proof Explorer


Theorem pwdjundom

Description: The powerset of a Dedekind-infinite set does not inject into its cardinal sum with itself. (Contributed by Mario Carneiro, 31-May-2015)

Ref Expression
Assertion pwdjundom ω A ¬ 𝒫 A A ⊔︀ A

Proof

Step Hyp Ref Expression
1 pwxpndom2 ω A ¬ 𝒫 A A ⊔︀ A × A
2 df1o2 1 𝑜 =
3 2 xpeq1i 1 𝑜 × A = × A
4 0ex V
5 reldom Rel
6 5 brrelex2i ω A A V
7 xpsnen2g V A V × A A
8 4 6 7 sylancr ω A × A A
9 3 8 eqbrtrid ω A 1 𝑜 × A A
10 9 ensymd ω A A 1 𝑜 × A
11 omex ω V
12 ordom Ord ω
13 1onn 1 𝑜 ω
14 ordelss Ord ω 1 𝑜 ω 1 𝑜 ω
15 12 13 14 mp2an 1 𝑜 ω
16 ssdomg ω V 1 𝑜 ω 1 𝑜 ω
17 11 15 16 mp2 1 𝑜 ω
18 domtr 1 𝑜 ω ω A 1 𝑜 A
19 17 18 mpan ω A 1 𝑜 A
20 xpdom1g A V 1 𝑜 A 1 𝑜 × A A × A
21 6 19 20 syl2anc ω A 1 𝑜 × A A × A
22 endomtr A 1 𝑜 × A 1 𝑜 × A A × A A A × A
23 10 21 22 syl2anc ω A A A × A
24 djudom2 A A × A A V A ⊔︀ A A ⊔︀ A × A
25 23 6 24 syl2anc ω A A ⊔︀ A A ⊔︀ A × A
26 domtr 𝒫 A A ⊔︀ A A ⊔︀ A A ⊔︀ A × A 𝒫 A A ⊔︀ A × A
27 26 expcom A ⊔︀ A A ⊔︀ A × A 𝒫 A A ⊔︀ A 𝒫 A A ⊔︀ A × A
28 25 27 syl ω A 𝒫 A A ⊔︀ A 𝒫 A A ⊔︀ A × A
29 1 28 mtod ω A ¬ 𝒫 A A ⊔︀ A