Metamath Proof Explorer


Theorem pwdom

Description: Injection of sets implies injection on power sets. (Contributed by Mario Carneiro, 9-Apr-2015)

Ref Expression
Assertion pwdom A B 𝒫 A 𝒫 B

Proof

Step Hyp Ref Expression
1 pweq A = 𝒫 A = 𝒫
2 1 breq1d A = 𝒫 A 𝒫 B 𝒫 𝒫 B
3 reldom Rel
4 3 brrelex1i A B A V
5 0sdomg A V A A
6 4 5 syl A B A A
7 6 biimpar A B A A
8 simpl A B A A B
9 fodomr A A B f f : B onto A
10 7 8 9 syl2anc A B A f f : B onto A
11 vex f V
12 fopwdom f V f : B onto A 𝒫 A 𝒫 B
13 11 12 mpan f : B onto A 𝒫 A 𝒫 B
14 13 exlimiv f f : B onto A 𝒫 A 𝒫 B
15 10 14 syl A B A 𝒫 A 𝒫 B
16 3 brrelex2i A B B V
17 16 pwexd A B 𝒫 B V
18 0ss B
19 18 sspwi 𝒫 𝒫 B
20 ssdomg 𝒫 B V 𝒫 𝒫 B 𝒫 𝒫 B
21 17 19 20 mpisyl A B 𝒫 𝒫 B
22 2 15 21 pm2.61ne A B 𝒫 A 𝒫 B