Metamath Proof Explorer


Theorem pwen

Description: If two sets are equinumerous, then their power sets are equinumerous. Proposition 10.15 of TakeutiZaring p. 87. (Contributed by NM, 29-Jan-2004) (Revised by Mario Carneiro, 9-Apr-2015)

Ref Expression
Assertion pwen A B 𝒫 A 𝒫 B

Proof

Step Hyp Ref Expression
1 relen Rel
2 1 brrelex1i A B A V
3 pw2eng A V 𝒫 A 2 𝑜 A
4 2 3 syl A B 𝒫 A 2 𝑜 A
5 2onn 2 𝑜 ω
6 5 elexi 2 𝑜 V
7 6 enref 2 𝑜 2 𝑜
8 mapen 2 𝑜 2 𝑜 A B 2 𝑜 A 2 𝑜 B
9 7 8 mpan A B 2 𝑜 A 2 𝑜 B
10 1 brrelex2i A B B V
11 pw2eng B V 𝒫 B 2 𝑜 B
12 ensym 𝒫 B 2 𝑜 B 2 𝑜 B 𝒫 B
13 10 11 12 3syl A B 2 𝑜 B 𝒫 B
14 entr 2 𝑜 A 2 𝑜 B 2 𝑜 B 𝒫 B 2 𝑜 A 𝒫 B
15 9 13 14 syl2anc A B 2 𝑜 A 𝒫 B
16 entr 𝒫 A 2 𝑜 A 2 𝑜 A 𝒫 B 𝒫 A 𝒫 B
17 4 15 16 syl2anc A B 𝒫 A 𝒫 B