Metamath Proof Explorer


Theorem pwfi

Description: The power set of a finite set is finite and vice-versa. Theorem 38 of Suppes p. 104 and its converse, Theorem 40 of Suppes p. 105. (Contributed by NM, 26-Mar-2007) Avoid ax-pow . (Revised by BTernaryTau, 7-Sep-2024)

Ref Expression
Assertion pwfi A Fin 𝒫 A Fin

Proof

Step Hyp Ref Expression
1 pweq x = 𝒫 x = 𝒫
2 1 eleq1d x = 𝒫 x Fin 𝒫 Fin
3 pweq x = y 𝒫 x = 𝒫 y
4 3 eleq1d x = y 𝒫 x Fin 𝒫 y Fin
5 pweq x = y z 𝒫 x = 𝒫 y z
6 5 eleq1d x = y z 𝒫 x Fin 𝒫 y z Fin
7 pweq x = A 𝒫 x = 𝒫 A
8 7 eleq1d x = A 𝒫 x Fin 𝒫 A Fin
9 pw0 𝒫 =
10 snfi Fin
11 9 10 eqeltri 𝒫 Fin
12 eqid c 𝒫 y c z = c 𝒫 y c z
13 12 pwfilem 𝒫 y Fin 𝒫 y z Fin
14 13 a1i y Fin 𝒫 y Fin 𝒫 y z Fin
15 2 4 6 8 11 14 findcard2 A Fin 𝒫 A Fin
16 pwfir 𝒫 A Fin A Fin
17 15 16 impbii A Fin 𝒫 A Fin