Metamath Proof Explorer


Theorem pwfseq

Description: The powerset of a Dedekind-infinite set does not inject into the set of finite sequences. The proof is due to Halbeisen and Shelah. Proposition 1.7 of KanamoriPincus p. 418. (Contributed by Mario Carneiro, 31-May-2015)

Ref Expression
Assertion pwfseq ω A ¬ 𝒫 A n ω A n

Proof

Step Hyp Ref Expression
1 reldom Rel
2 1 brrelex2i ω A A V
3 domeng A V ω A t ω t t A
4 bren ω t h h : ω 1-1 onto t
5 harcl har 𝒫 A On
6 infxpenc2 har 𝒫 A On m b har 𝒫 A ω b m b : b × b 1-1 onto b
7 5 6 ax-mp m b har 𝒫 A ω b m b : b × b 1-1 onto b
8 simpr h : ω 1-1 onto t t A b har 𝒫 A ω b m b : b × b 1-1 onto b g : 𝒫 A 1-1 n ω A n g : 𝒫 A 1-1 n ω A n
9 oveq2 n = k A n = A k
10 9 cbviunv n ω A n = k ω A k
11 f1eq3 n ω A n = k ω A k g : 𝒫 A 1-1 n ω A n g : 𝒫 A 1-1 k ω A k
12 10 11 ax-mp g : 𝒫 A 1-1 n ω A n g : 𝒫 A 1-1 k ω A k
13 8 12 sylib h : ω 1-1 onto t t A b har 𝒫 A ω b m b : b × b 1-1 onto b g : 𝒫 A 1-1 n ω A n g : 𝒫 A 1-1 k ω A k
14 simpllr h : ω 1-1 onto t t A b har 𝒫 A ω b m b : b × b 1-1 onto b g : 𝒫 A 1-1 n ω A n t A
15 simplll h : ω 1-1 onto t t A b har 𝒫 A ω b m b : b × b 1-1 onto b g : 𝒫 A 1-1 n ω A n h : ω 1-1 onto t
16 biid u A r u × u r We u ω u u A r u × u r We u ω u
17 simplr h : ω 1-1 onto t t A b har 𝒫 A ω b m b : b × b 1-1 onto b g : 𝒫 A 1-1 n ω A n b har 𝒫 A ω b m b : b × b 1-1 onto b
18 sseq2 b = w ω b ω w
19 fveq2 b = w m b = m w
20 19 f1oeq1d b = w m b : b × b 1-1 onto b m w : b × b 1-1 onto b
21 xpeq12 b = w b = w b × b = w × w
22 21 anidms b = w b × b = w × w
23 22 f1oeq2d b = w m w : b × b 1-1 onto b m w : w × w 1-1 onto b
24 f1oeq3 b = w m w : w × w 1-1 onto b m w : w × w 1-1 onto w
25 20 23 24 3bitrd b = w m b : b × b 1-1 onto b m w : w × w 1-1 onto w
26 18 25 imbi12d b = w ω b m b : b × b 1-1 onto b ω w m w : w × w 1-1 onto w
27 26 cbvralvw b har 𝒫 A ω b m b : b × b 1-1 onto b w har 𝒫 A ω w m w : w × w 1-1 onto w
28 17 27 sylib h : ω 1-1 onto t t A b har 𝒫 A ω b m b : b × b 1-1 onto b g : 𝒫 A 1-1 n ω A n w har 𝒫 A ω w m w : w × w 1-1 onto w
29 eqid OrdIso r u = OrdIso r u
30 eqid s dom OrdIso r u , z dom OrdIso r u OrdIso r u s OrdIso r u z = s dom OrdIso r u , z dom OrdIso r u OrdIso r u s OrdIso r u z
31 eqid OrdIso r u m dom OrdIso r u s dom OrdIso r u , z dom OrdIso r u OrdIso r u s OrdIso r u z -1 = OrdIso r u m dom OrdIso r u s dom OrdIso r u , z dom OrdIso r u OrdIso r u s OrdIso r u z -1
32 eqid seq ω p V , f V x u suc p f x p OrdIso r u m dom OrdIso r u s dom OrdIso r u , z dom OrdIso r u OrdIso r u s OrdIso r u z -1 x p OrdIso r u = seq ω p V , f V x u suc p f x p OrdIso r u m dom OrdIso r u s dom OrdIso r u , z dom OrdIso r u OrdIso r u s OrdIso r u z -1 x p OrdIso r u
33 oveq2 n = k u n = u k
34 33 cbviunv n ω u n = k ω u k
35 34 mpteq1i y n ω u n dom y seq ω p V , f V x u suc p f x p OrdIso r u m dom OrdIso r u s dom OrdIso r u , z dom OrdIso r u OrdIso r u s OrdIso r u z -1 x p OrdIso r u dom y y = y k ω u k dom y seq ω p V , f V x u suc p f x p OrdIso r u m dom OrdIso r u s dom OrdIso r u , z dom OrdIso r u OrdIso r u s OrdIso r u z -1 x p OrdIso r u dom y y
36 eqid x ω , y u OrdIso r u x y = x ω , y u OrdIso r u x y
37 eqid OrdIso r u m dom OrdIso r u s dom OrdIso r u , z dom OrdIso r u OrdIso r u s OrdIso r u z -1 x ω , y u OrdIso r u x y y n ω u n dom y seq ω p V , f V x u suc p f x p OrdIso r u m dom OrdIso r u s dom OrdIso r u , z dom OrdIso r u OrdIso r u s OrdIso r u z -1 x p OrdIso r u dom y y = OrdIso r u m dom OrdIso r u s dom OrdIso r u , z dom OrdIso r u OrdIso r u s OrdIso r u z -1 x ω , y u OrdIso r u x y y n ω u n dom y seq ω p V , f V x u suc p f x p OrdIso r u m dom OrdIso r u s dom OrdIso r u , z dom OrdIso r u OrdIso r u s OrdIso r u z -1 x p OrdIso r u dom y y
38 13 14 15 16 28 29 30 31 32 35 36 37 pwfseqlem5 ¬ h : ω 1-1 onto t t A b har 𝒫 A ω b m b : b × b 1-1 onto b g : 𝒫 A 1-1 n ω A n
39 38 imnani h : ω 1-1 onto t t A b har 𝒫 A ω b m b : b × b 1-1 onto b ¬ g : 𝒫 A 1-1 n ω A n
40 39 nexdv h : ω 1-1 onto t t A b har 𝒫 A ω b m b : b × b 1-1 onto b ¬ g g : 𝒫 A 1-1 n ω A n
41 brdomi 𝒫 A n ω A n g g : 𝒫 A 1-1 n ω A n
42 40 41 nsyl h : ω 1-1 onto t t A b har 𝒫 A ω b m b : b × b 1-1 onto b ¬ 𝒫 A n ω A n
43 42 ex h : ω 1-1 onto t t A b har 𝒫 A ω b m b : b × b 1-1 onto b ¬ 𝒫 A n ω A n
44 43 exlimdv h : ω 1-1 onto t t A m b har 𝒫 A ω b m b : b × b 1-1 onto b ¬ 𝒫 A n ω A n
45 7 44 mpi h : ω 1-1 onto t t A ¬ 𝒫 A n ω A n
46 45 ex h : ω 1-1 onto t t A ¬ 𝒫 A n ω A n
47 46 exlimiv h h : ω 1-1 onto t t A ¬ 𝒫 A n ω A n
48 4 47 sylbi ω t t A ¬ 𝒫 A n ω A n
49 48 imp ω t t A ¬ 𝒫 A n ω A n
50 49 exlimiv t ω t t A ¬ 𝒫 A n ω A n
51 3 50 syl6bi A V ω A ¬ 𝒫 A n ω A n
52 2 51 mpcom ω A ¬ 𝒫 A n ω A n