Metamath Proof Explorer


Theorem pwfseqlem1

Description: Lemma for pwfseq . Derive a contradiction by diagonalization. (Contributed by Mario Carneiro, 31-May-2015)

Ref Expression
Hypotheses pwfseqlem4.g φ G : 𝒫 A 1-1 n ω A n
pwfseqlem4.x φ X A
pwfseqlem4.h φ H : ω 1-1 onto X
pwfseqlem4.ps ψ x A r x × x r We x ω x
pwfseqlem4.k φ ψ K : n ω x n 1-1 x
pwfseqlem4.d D = G w x | K -1 w ran G ¬ w G -1 K -1 w
Assertion pwfseqlem1 φ ψ D n ω A n n ω x n

Proof

Step Hyp Ref Expression
1 pwfseqlem4.g φ G : 𝒫 A 1-1 n ω A n
2 pwfseqlem4.x φ X A
3 pwfseqlem4.h φ H : ω 1-1 onto X
4 pwfseqlem4.ps ψ x A r x × x r We x ω x
5 pwfseqlem4.k φ ψ K : n ω x n 1-1 x
6 pwfseqlem4.d D = G w x | K -1 w ran G ¬ w G -1 K -1 w
7 1 adantr φ ψ G : 𝒫 A 1-1 n ω A n
8 f1f G : 𝒫 A 1-1 n ω A n G : 𝒫 A n ω A n
9 7 8 syl φ ψ G : 𝒫 A n ω A n
10 ssrab2 w x | K -1 w ran G ¬ w G -1 K -1 w x
11 simprl1 φ x A r x × x r We x ω x x A
12 4 11 sylan2b φ ψ x A
13 10 12 sstrid φ ψ w x | K -1 w ran G ¬ w G -1 K -1 w A
14 vex x V
15 14 rabex w x | K -1 w ran G ¬ w G -1 K -1 w V
16 15 elpw w x | K -1 w ran G ¬ w G -1 K -1 w 𝒫 A w x | K -1 w ran G ¬ w G -1 K -1 w A
17 13 16 sylibr φ ψ w x | K -1 w ran G ¬ w G -1 K -1 w 𝒫 A
18 9 17 ffvelrnd φ ψ G w x | K -1 w ran G ¬ w G -1 K -1 w n ω A n
19 6 18 eqeltrid φ ψ D n ω A n
20 pm5.19 ¬ K D w x | K -1 w ran G ¬ w G -1 K -1 w ¬ K D w x | K -1 w ran G ¬ w G -1 K -1 w
21 5 adantr φ ψ D n ω x n K : n ω x n 1-1 x
22 f1f K : n ω x n 1-1 x K : n ω x n x
23 21 22 syl φ ψ D n ω x n K : n ω x n x
24 ffvelrn K : n ω x n x D n ω x n K D x
25 23 24 sylancom φ ψ D n ω x n K D x
26 f1f1orn K : n ω x n 1-1 x K : n ω x n 1-1 onto ran K
27 21 26 syl φ ψ D n ω x n K : n ω x n 1-1 onto ran K
28 f1ocnvfv1 K : n ω x n 1-1 onto ran K D n ω x n K -1 K D = D
29 27 28 sylancom φ ψ D n ω x n K -1 K D = D
30 f1fn G : 𝒫 A 1-1 n ω A n G Fn 𝒫 A
31 7 30 syl φ ψ G Fn 𝒫 A
32 fnfvelrn G Fn 𝒫 A w x | K -1 w ran G ¬ w G -1 K -1 w 𝒫 A G w x | K -1 w ran G ¬ w G -1 K -1 w ran G
33 31 17 32 syl2anc φ ψ G w x | K -1 w ran G ¬ w G -1 K -1 w ran G
34 6 33 eqeltrid φ ψ D ran G
35 34 adantr φ ψ D n ω x n D ran G
36 29 35 eqeltrd φ ψ D n ω x n K -1 K D ran G
37 fveq2 y = K D K -1 y = K -1 K D
38 37 eleq1d y = K D K -1 y ran G K -1 K D ran G
39 id y = K D y = K D
40 2fveq3 y = K D G -1 K -1 y = G -1 K -1 K D
41 39 40 eleq12d y = K D y G -1 K -1 y K D G -1 K -1 K D
42 41 notbid y = K D ¬ y G -1 K -1 y ¬ K D G -1 K -1 K D
43 38 42 anbi12d y = K D K -1 y ran G ¬ y G -1 K -1 y K -1 K D ran G ¬ K D G -1 K -1 K D
44 fveq2 w = y K -1 w = K -1 y
45 44 eleq1d w = y K -1 w ran G K -1 y ran G
46 id w = y w = y
47 2fveq3 w = y G -1 K -1 w = G -1 K -1 y
48 46 47 eleq12d w = y w G -1 K -1 w y G -1 K -1 y
49 48 notbid w = y ¬ w G -1 K -1 w ¬ y G -1 K -1 y
50 45 49 anbi12d w = y K -1 w ran G ¬ w G -1 K -1 w K -1 y ran G ¬ y G -1 K -1 y
51 50 cbvrabv w x | K -1 w ran G ¬ w G -1 K -1 w = y x | K -1 y ran G ¬ y G -1 K -1 y
52 43 51 elrab2 K D w x | K -1 w ran G ¬ w G -1 K -1 w K D x K -1 K D ran G ¬ K D G -1 K -1 K D
53 anass K D x K -1 K D ran G ¬ K D G -1 K -1 K D K D x K -1 K D ran G ¬ K D G -1 K -1 K D
54 52 53 bitr4i K D w x | K -1 w ran G ¬ w G -1 K -1 w K D x K -1 K D ran G ¬ K D G -1 K -1 K D
55 54 baib K D x K -1 K D ran G K D w x | K -1 w ran G ¬ w G -1 K -1 w ¬ K D G -1 K -1 K D
56 25 36 55 syl2anc φ ψ D n ω x n K D w x | K -1 w ran G ¬ w G -1 K -1 w ¬ K D G -1 K -1 K D
57 29 6 eqtrdi φ ψ D n ω x n K -1 K D = G w x | K -1 w ran G ¬ w G -1 K -1 w
58 57 fveq2d φ ψ D n ω x n G -1 K -1 K D = G -1 G w x | K -1 w ran G ¬ w G -1 K -1 w
59 f1f1orn G : 𝒫 A 1-1 n ω A n G : 𝒫 A 1-1 onto ran G
60 7 59 syl φ ψ G : 𝒫 A 1-1 onto ran G
61 f1ocnvfv1 G : 𝒫 A 1-1 onto ran G w x | K -1 w ran G ¬ w G -1 K -1 w 𝒫 A G -1 G w x | K -1 w ran G ¬ w G -1 K -1 w = w x | K -1 w ran G ¬ w G -1 K -1 w
62 60 17 61 syl2anc φ ψ G -1 G w x | K -1 w ran G ¬ w G -1 K -1 w = w x | K -1 w ran G ¬ w G -1 K -1 w
63 62 adantr φ ψ D n ω x n G -1 G w x | K -1 w ran G ¬ w G -1 K -1 w = w x | K -1 w ran G ¬ w G -1 K -1 w
64 58 63 eqtrd φ ψ D n ω x n G -1 K -1 K D = w x | K -1 w ran G ¬ w G -1 K -1 w
65 64 eleq2d φ ψ D n ω x n K D G -1 K -1 K D K D w x | K -1 w ran G ¬ w G -1 K -1 w
66 65 notbid φ ψ D n ω x n ¬ K D G -1 K -1 K D ¬ K D w x | K -1 w ran G ¬ w G -1 K -1 w
67 56 66 bitrd φ ψ D n ω x n K D w x | K -1 w ran G ¬ w G -1 K -1 w ¬ K D w x | K -1 w ran G ¬ w G -1 K -1 w
68 67 ex φ ψ D n ω x n K D w x | K -1 w ran G ¬ w G -1 K -1 w ¬ K D w x | K -1 w ran G ¬ w G -1 K -1 w
69 20 68 mtoi φ ψ ¬ D n ω x n
70 19 69 eldifd φ ψ D n ω A n n ω x n