Metamath Proof Explorer


Theorem pwfseqlem2

Description: Lemma for pwfseq . (Contributed by Mario Carneiro, 18-Nov-2014) (Revised by AV, 18-Sep-2021)

Ref Expression
Hypotheses pwfseqlem4.g φ G : 𝒫 A 1-1 n ω A n
pwfseqlem4.x φ X A
pwfseqlem4.h φ H : ω 1-1 onto X
pwfseqlem4.ps ψ x A r x × x r We x ω x
pwfseqlem4.k φ ψ K : n ω x n 1-1 x
pwfseqlem4.d D = G w x | K -1 w ran G ¬ w G -1 K -1 w
pwfseqlem4.f F = x V , r V if x Fin H card x D z ω | ¬ D z x
Assertion pwfseqlem2 Y Fin R V Y F R = H card Y

Proof

Step Hyp Ref Expression
1 pwfseqlem4.g φ G : 𝒫 A 1-1 n ω A n
2 pwfseqlem4.x φ X A
3 pwfseqlem4.h φ H : ω 1-1 onto X
4 pwfseqlem4.ps ψ x A r x × x r We x ω x
5 pwfseqlem4.k φ ψ K : n ω x n 1-1 x
6 pwfseqlem4.d D = G w x | K -1 w ran G ¬ w G -1 K -1 w
7 pwfseqlem4.f F = x V , r V if x Fin H card x D z ω | ¬ D z x
8 oveq1 a = Y a F s = Y F s
9 2fveq3 a = Y H card a = H card Y
10 8 9 eqeq12d a = Y a F s = H card a Y F s = H card Y
11 oveq2 s = R Y F s = Y F R
12 11 eqeq1d s = R Y F s = H card Y Y F R = H card Y
13 nfcv _ x a
14 nfcv _ r a
15 nfcv _ r s
16 nfmpo1 _ x x V , r V if x Fin H card x D z ω | ¬ D z x
17 7 16 nfcxfr _ x F
18 nfcv _ x r
19 13 17 18 nfov _ x a F r
20 19 nfeq1 x a F r = H card a
21 nfmpo2 _ r x V , r V if x Fin H card x D z ω | ¬ D z x
22 7 21 nfcxfr _ r F
23 14 22 15 nfov _ r a F s
24 23 nfeq1 r a F s = H card a
25 oveq1 x = a x F r = a F r
26 2fveq3 x = a H card x = H card a
27 25 26 eqeq12d x = a x F r = H card x a F r = H card a
28 oveq2 r = s a F r = a F s
29 28 eqeq1d r = s a F r = H card a a F s = H card a
30 vex x V
31 vex r V
32 fvex H card x V
33 fvex D z ω | ¬ D z x V
34 32 33 ifex if x Fin H card x D z ω | ¬ D z x V
35 7 ovmpt4g x V r V if x Fin H card x D z ω | ¬ D z x V x F r = if x Fin H card x D z ω | ¬ D z x
36 30 31 34 35 mp3an x F r = if x Fin H card x D z ω | ¬ D z x
37 iftrue x Fin if x Fin H card x D z ω | ¬ D z x = H card x
38 36 37 eqtrid x Fin x F r = H card x
39 38 adantr x Fin r V x F r = H card x
40 13 14 15 20 24 27 29 39 vtocl2gaf a Fin s V a F s = H card a
41 10 12 40 vtocl2ga Y Fin R V Y F R = H card Y