Metamath Proof Explorer


Theorem pwfseqlem3

Description: Lemma for pwfseq . Using the construction D from pwfseqlem1 , produce a function F that maps any well-ordered infinite set to an element outside the set. (Contributed by Mario Carneiro, 31-May-2015)

Ref Expression
Hypotheses pwfseqlem4.g φ G : 𝒫 A 1-1 n ω A n
pwfseqlem4.x φ X A
pwfseqlem4.h φ H : ω 1-1 onto X
pwfseqlem4.ps ψ x A r x × x r We x ω x
pwfseqlem4.k φ ψ K : n ω x n 1-1 x
pwfseqlem4.d D = G w x | K -1 w ran G ¬ w G -1 K -1 w
pwfseqlem4.f F = x V , r V if x Fin H card x D z ω | ¬ D z x
Assertion pwfseqlem3 φ ψ x F r A x

Proof

Step Hyp Ref Expression
1 pwfseqlem4.g φ G : 𝒫 A 1-1 n ω A n
2 pwfseqlem4.x φ X A
3 pwfseqlem4.h φ H : ω 1-1 onto X
4 pwfseqlem4.ps ψ x A r x × x r We x ω x
5 pwfseqlem4.k φ ψ K : n ω x n 1-1 x
6 pwfseqlem4.d D = G w x | K -1 w ran G ¬ w G -1 K -1 w
7 pwfseqlem4.f F = x V , r V if x Fin H card x D z ω | ¬ D z x
8 vex x V
9 vex r V
10 fvex H card x V
11 fvex D z ω | ¬ D z x V
12 10 11 ifex if x Fin H card x D z ω | ¬ D z x V
13 7 ovmpt4g x V r V if x Fin H card x D z ω | ¬ D z x V x F r = if x Fin H card x D z ω | ¬ D z x
14 8 9 12 13 mp3an x F r = if x Fin H card x D z ω | ¬ D z x
15 4 simprbi ψ ω x
16 15 adantl φ ψ ω x
17 domnsym ω x ¬ x ω
18 16 17 syl φ ψ ¬ x ω
19 isfinite x Fin x ω
20 18 19 sylnibr φ ψ ¬ x Fin
21 20 iffalsed φ ψ if x Fin H card x D z ω | ¬ D z x = D z ω | ¬ D z x
22 14 21 eqtrid φ ψ x F r = D z ω | ¬ D z x
23 1 2 3 4 5 6 pwfseqlem1 φ ψ D n ω A n n ω x n
24 eldif D n ω A n n ω x n D n ω A n ¬ D n ω x n
25 23 24 sylib φ ψ D n ω A n ¬ D n ω x n
26 25 simpld φ ψ D n ω A n
27 eliun D n ω A n n ω D A n
28 26 27 sylib φ ψ n ω D A n
29 elmapi D A n D : n A
30 29 ad2antll φ ψ n ω D A n D : n A
31 ssiun2 n ω x n n ω x n
32 31 ad2antrl φ ψ n ω D A n x n n ω x n
33 25 simprd φ ψ ¬ D n ω x n
34 33 adantr φ ψ n ω D A n ¬ D n ω x n
35 32 34 ssneldd φ ψ n ω D A n ¬ D x n
36 vex n V
37 8 36 elmap D x n D : n x
38 ffn D : n A D Fn n
39 ffnfv D : n x D Fn n z n D z x
40 39 baib D Fn n D : n x z n D z x
41 30 38 40 3syl φ ψ n ω D A n D : n x z n D z x
42 37 41 syl5bb φ ψ n ω D A n D x n z n D z x
43 35 42 mtbid φ ψ n ω D A n ¬ z n D z x
44 nnon n ω n On
45 44 ad2antrl φ ψ n ω D A n n On
46 ssrab2 z ω | ¬ D z x ω
47 omsson ω On
48 46 47 sstri z ω | ¬ D z x On
49 ordom Ord ω
50 simprl φ ψ n ω D A n n ω
51 ordelss Ord ω n ω n ω
52 49 50 51 sylancr φ ψ n ω D A n n ω
53 rexnal z n ¬ D z x ¬ z n D z x
54 43 53 sylibr φ ψ n ω D A n z n ¬ D z x
55 ssrexv n ω z n ¬ D z x z ω ¬ D z x
56 52 54 55 sylc φ ψ n ω D A n z ω ¬ D z x
57 rabn0 z ω | ¬ D z x z ω ¬ D z x
58 56 57 sylibr φ ψ n ω D A n z ω | ¬ D z x
59 onint z ω | ¬ D z x On z ω | ¬ D z x z ω | ¬ D z x z ω | ¬ D z x
60 48 58 59 sylancr φ ψ n ω D A n z ω | ¬ D z x z ω | ¬ D z x
61 48 60 sselid φ ψ n ω D A n z ω | ¬ D z x On
62 ontri1 n On z ω | ¬ D z x On n z ω | ¬ D z x ¬ z ω | ¬ D z x n
63 45 61 62 syl2anc φ ψ n ω D A n n z ω | ¬ D z x ¬ z ω | ¬ D z x n
64 ssintrab n z ω | ¬ D z x z ω ¬ D z x n z
65 nnon z ω z On
66 ontri1 n On z On n z ¬ z n
67 44 65 66 syl2an n ω z ω n z ¬ z n
68 67 imbi2d n ω z ω ¬ D z x n z ¬ D z x ¬ z n
69 con34b z n D z x ¬ D z x ¬ z n
70 68 69 bitr4di n ω z ω ¬ D z x n z z n D z x
71 70 pm5.74da n ω z ω ¬ D z x n z z ω z n D z x
72 bi2.04 z ω z n D z x z n z ω D z x
73 71 72 bitrdi n ω z ω ¬ D z x n z z n z ω D z x
74 elnn z n n ω z ω
75 pm2.27 z ω z ω D z x D z x
76 74 75 syl z n n ω z ω D z x D z x
77 76 expcom n ω z n z ω D z x D z x
78 77 a2d n ω z n z ω D z x z n D z x
79 73 78 sylbid n ω z ω ¬ D z x n z z n D z x
80 79 ad2antrl φ ψ n ω D A n z ω ¬ D z x n z z n D z x
81 80 ralimdv2 φ ψ n ω D A n z ω ¬ D z x n z z n D z x
82 64 81 syl5bi φ ψ n ω D A n n z ω | ¬ D z x z n D z x
83 63 82 sylbird φ ψ n ω D A n ¬ z ω | ¬ D z x n z n D z x
84 43 83 mt3d φ ψ n ω D A n z ω | ¬ D z x n
85 30 84 ffvelrnd φ ψ n ω D A n D z ω | ¬ D z x A
86 fveq2 y = z ω | ¬ D z x D y = D z ω | ¬ D z x
87 86 eleq1d y = z ω | ¬ D z x D y x D z ω | ¬ D z x x
88 87 notbid y = z ω | ¬ D z x ¬ D y x ¬ D z ω | ¬ D z x x
89 fveq2 z = y D z = D y
90 89 eleq1d z = y D z x D y x
91 90 notbid z = y ¬ D z x ¬ D y x
92 91 cbvrabv z ω | ¬ D z x = y ω | ¬ D y x
93 88 92 elrab2 z ω | ¬ D z x z ω | ¬ D z x z ω | ¬ D z x ω ¬ D z ω | ¬ D z x x
94 93 simprbi z ω | ¬ D z x z ω | ¬ D z x ¬ D z ω | ¬ D z x x
95 60 94 syl φ ψ n ω D A n ¬ D z ω | ¬ D z x x
96 85 95 eldifd φ ψ n ω D A n D z ω | ¬ D z x A x
97 28 96 rexlimddv φ ψ D z ω | ¬ D z x A x
98 22 97 eqeltrd φ ψ x F r A x