Step |
Hyp |
Ref |
Expression |
1 |
|
pwfseqlem4.g |
|
2 |
|
pwfseqlem4.x |
|
3 |
|
pwfseqlem4.h |
|
4 |
|
pwfseqlem4.ps |
|
5 |
|
pwfseqlem4.k |
|
6 |
|
pwfseqlem4.d |
|
7 |
|
pwfseqlem4.f |
|
8 |
|
vex |
|
9 |
|
vex |
|
10 |
|
fvex |
|
11 |
|
fvex |
|
12 |
10 11
|
ifex |
|
13 |
7
|
ovmpt4g |
|
14 |
8 9 12 13
|
mp3an |
|
15 |
4
|
simprbi |
|
16 |
15
|
adantl |
|
17 |
|
domnsym |
|
18 |
16 17
|
syl |
|
19 |
|
isfinite |
|
20 |
18 19
|
sylnibr |
|
21 |
20
|
iffalsed |
|
22 |
14 21
|
eqtrid |
|
23 |
1 2 3 4 5 6
|
pwfseqlem1 |
|
24 |
|
eldif |
|
25 |
23 24
|
sylib |
|
26 |
25
|
simpld |
|
27 |
|
eliun |
|
28 |
26 27
|
sylib |
|
29 |
|
elmapi |
|
30 |
29
|
ad2antll |
|
31 |
|
ssiun2 |
|
32 |
31
|
ad2antrl |
|
33 |
25
|
simprd |
|
34 |
33
|
adantr |
|
35 |
32 34
|
ssneldd |
|
36 |
|
vex |
|
37 |
8 36
|
elmap |
|
38 |
|
ffn |
|
39 |
|
ffnfv |
|
40 |
39
|
baib |
|
41 |
30 38 40
|
3syl |
|
42 |
37 41
|
syl5bb |
|
43 |
35 42
|
mtbid |
|
44 |
|
nnon |
|
45 |
44
|
ad2antrl |
|
46 |
|
ssrab2 |
|
47 |
|
omsson |
|
48 |
46 47
|
sstri |
|
49 |
|
ordom |
|
50 |
|
simprl |
|
51 |
|
ordelss |
|
52 |
49 50 51
|
sylancr |
|
53 |
|
rexnal |
|
54 |
43 53
|
sylibr |
|
55 |
|
ssrexv |
|
56 |
52 54 55
|
sylc |
|
57 |
|
rabn0 |
|
58 |
56 57
|
sylibr |
|
59 |
|
onint |
|
60 |
48 58 59
|
sylancr |
|
61 |
48 60
|
sselid |
|
62 |
|
ontri1 |
|
63 |
45 61 62
|
syl2anc |
|
64 |
|
ssintrab |
|
65 |
|
nnon |
|
66 |
|
ontri1 |
|
67 |
44 65 66
|
syl2an |
|
68 |
67
|
imbi2d |
|
69 |
|
con34b |
|
70 |
68 69
|
bitr4di |
|
71 |
70
|
pm5.74da |
|
72 |
|
bi2.04 |
|
73 |
71 72
|
bitrdi |
|
74 |
|
elnn |
|
75 |
|
pm2.27 |
|
76 |
74 75
|
syl |
|
77 |
76
|
expcom |
|
78 |
77
|
a2d |
|
79 |
73 78
|
sylbid |
|
80 |
79
|
ad2antrl |
|
81 |
80
|
ralimdv2 |
|
82 |
64 81
|
syl5bi |
|
83 |
63 82
|
sylbird |
|
84 |
43 83
|
mt3d |
|
85 |
30 84
|
ffvelrnd |
|
86 |
|
fveq2 |
|
87 |
86
|
eleq1d |
|
88 |
87
|
notbid |
|
89 |
|
fveq2 |
|
90 |
89
|
eleq1d |
|
91 |
90
|
notbid |
|
92 |
91
|
cbvrabv |
|
93 |
88 92
|
elrab2 |
|
94 |
93
|
simprbi |
|
95 |
60 94
|
syl |
|
96 |
85 95
|
eldifd |
|
97 |
28 96
|
rexlimddv |
|
98 |
22 97
|
eqeltrd |
|