Metamath Proof Explorer


Theorem pwfseqlem4

Description: Lemma for pwfseq . Derive a final contradiction from the function F in pwfseqlem3 . Applying fpwwe2 to it, we get a certain maximal well-ordered subset Z , but the defining property ( Z F ( WZ ) ) e. Z contradicts our assumption on F , so we are reduced to the case of Z finite. This too is a contradiction, though, because Z and its preimage under ( WZ ) are distinct sets of the same cardinality and in a subset relation, which is impossible for finite sets. (Contributed by Mario Carneiro, 31-May-2015)

Ref Expression
Hypotheses pwfseqlem4.g φ G : 𝒫 A 1-1 n ω A n
pwfseqlem4.x φ X A
pwfseqlem4.h φ H : ω 1-1 onto X
pwfseqlem4.ps ψ x A r x × x r We x ω x
pwfseqlem4.k φ ψ K : n ω x n 1-1 x
pwfseqlem4.d D = G w x | K -1 w ran G ¬ w G -1 K -1 w
pwfseqlem4.f F = x V , r V if x Fin H card x D z ω | ¬ D z x
pwfseqlem4.w W = a s | a A s a × a s We a b a [˙ s -1 b / v]˙ v F s v × v = b
pwfseqlem4.z Z = dom W
Assertion pwfseqlem4 ¬ φ

Proof

Step Hyp Ref Expression
1 pwfseqlem4.g φ G : 𝒫 A 1-1 n ω A n
2 pwfseqlem4.x φ X A
3 pwfseqlem4.h φ H : ω 1-1 onto X
4 pwfseqlem4.ps ψ x A r x × x r We x ω x
5 pwfseqlem4.k φ ψ K : n ω x n 1-1 x
6 pwfseqlem4.d D = G w x | K -1 w ran G ¬ w G -1 K -1 w
7 pwfseqlem4.f F = x V , r V if x Fin H card x D z ω | ¬ D z x
8 pwfseqlem4.w W = a s | a A s a × a s We a b a [˙ s -1 b / v]˙ v F s v × v = b
9 pwfseqlem4.z Z = dom W
10 eqid Z = Z
11 eqid W Z = W Z
12 10 11 pm3.2i Z = Z W Z = W Z
13 omex ω V
14 ovex A n V
15 13 14 iunex n ω A n V
16 f1dmex G : 𝒫 A 1-1 n ω A n n ω A n V 𝒫 A V
17 1 15 16 sylancl φ 𝒫 A V
18 pwexb A V 𝒫 A V
19 17 18 sylibr φ A V
20 1 2 3 4 5 6 7 pwfseqlem4a φ a A s a × a s We a a F s A
21 8 19 20 9 fpwwe2 φ Z W W Z Z F W Z Z Z = Z W Z = W Z
22 12 21 mpbiri φ Z W W Z Z F W Z Z
23 22 simprd φ Z F W Z Z
24 22 simpld φ Z W W Z
25 8 19 fpwwe2lem2 φ Z W W Z Z A W Z Z × Z W Z We Z b Z [˙ W Z -1 b / v]˙ v F W Z v × v = b
26 24 25 mpbid φ Z A W Z Z × Z W Z We Z b Z [˙ W Z -1 b / v]˙ v F W Z v × v = b
27 26 simpld φ Z A W Z Z × Z
28 27 simpld φ Z A
29 19 28 ssexd φ Z V
30 sseq1 a = Z a A Z A
31 id a = Z a = Z
32 31 sqxpeqd a = Z a × a = Z × Z
33 32 sseq2d a = Z W Z a × a W Z Z × Z
34 weeq2 a = Z W Z We a W Z We Z
35 30 33 34 3anbi123d a = Z a A W Z a × a W Z We a Z A W Z Z × Z W Z We Z
36 35 anbi2d a = Z φ a A W Z a × a W Z We a φ Z A W Z Z × Z W Z We Z
37 id Z A W Z Z × Z W Z We Z Z A W Z Z × Z W Z We Z
38 37 3expa Z A W Z Z × Z W Z We Z Z A W Z Z × Z W Z We Z
39 38 adantrr Z A W Z Z × Z W Z We Z b Z [˙ W Z -1 b / v]˙ v F W Z v × v = b Z A W Z Z × Z W Z We Z
40 26 39 syl φ Z A W Z Z × Z W Z We Z
41 40 pm4.71i φ φ Z A W Z Z × Z W Z We Z
42 36 41 bitr4di a = Z φ a A W Z a × a W Z We a φ
43 oveq1 a = Z a F W Z = Z F W Z
44 43 31 eleq12d a = Z a F W Z a Z F W Z Z
45 breq1 a = Z a ω Z ω
46 44 45 imbi12d a = Z a F W Z a a ω Z F W Z Z Z ω
47 42 46 imbi12d a = Z φ a A W Z a × a W Z We a a F W Z a a ω φ Z F W Z Z Z ω
48 fvex W Z V
49 sseq1 s = W Z s a × a W Z a × a
50 weeq1 s = W Z s We a W Z We a
51 49 50 3anbi23d s = W Z a A s a × a s We a a A W Z a × a W Z We a
52 51 anbi2d s = W Z φ a A s a × a s We a φ a A W Z a × a W Z We a
53 oveq2 s = W Z a F s = a F W Z
54 53 eleq1d s = W Z a F s a a F W Z a
55 54 imbi1d s = W Z a F s a a ω a F W Z a a ω
56 52 55 imbi12d s = W Z φ a A s a × a s We a a F s a a ω φ a A W Z a × a W Z We a a F W Z a a ω
57 omelon ω On
58 onenon ω On ω dom card
59 57 58 ax-mp ω dom card
60 simpr3 φ a A s a × a s We a s We a
61 60 19.8ad φ a A s a × a s We a s s We a
62 ween a dom card s s We a
63 61 62 sylibr φ a A s a × a s We a a dom card
64 domtri2 ω dom card a dom card ω a ¬ a ω
65 59 63 64 sylancr φ a A s a × a s We a ω a ¬ a ω
66 nfv r φ a A s a × a s We a ω a
67 nfcv _ r a
68 nfmpo2 _ r x V , r V if x Fin H card x D z ω | ¬ D z x
69 7 68 nfcxfr _ r F
70 nfcv _ r s
71 67 69 70 nfov _ r a F s
72 71 nfel1 r a F s A a
73 66 72 nfim r φ a A s a × a s We a ω a a F s A a
74 sseq1 r = s r a × a s a × a
75 weeq1 r = s r We a s We a
76 74 75 3anbi23d r = s a A r a × a r We a a A s a × a s We a
77 76 anbi1d r = s a A r a × a r We a ω a a A s a × a s We a ω a
78 77 anbi2d r = s φ a A r a × a r We a ω a φ a A s a × a s We a ω a
79 oveq2 r = s a F r = a F s
80 79 eleq1d r = s a F r A a a F s A a
81 78 80 imbi12d r = s φ a A r a × a r We a ω a a F r A a φ a A s a × a s We a ω a a F s A a
82 nfv x φ a A r a × a r We a ω a
83 nfcv _ x a
84 nfmpo1 _ x x V , r V if x Fin H card x D z ω | ¬ D z x
85 7 84 nfcxfr _ x F
86 nfcv _ x r
87 83 85 86 nfov _ x a F r
88 87 nfel1 x a F r A a
89 82 88 nfim x φ a A r a × a r We a ω a a F r A a
90 sseq1 x = a x A a A
91 xpeq12 x = a x = a x × x = a × a
92 91 anidms x = a x × x = a × a
93 92 sseq2d x = a r x × x r a × a
94 weeq2 x = a r We x r We a
95 90 93 94 3anbi123d x = a x A r x × x r We x a A r a × a r We a
96 breq2 x = a ω x ω a
97 95 96 anbi12d x = a x A r x × x r We x ω x a A r a × a r We a ω a
98 4 97 syl5bb x = a ψ a A r a × a r We a ω a
99 98 anbi2d x = a φ ψ φ a A r a × a r We a ω a
100 oveq1 x = a x F r = a F r
101 difeq2 x = a A x = A a
102 100 101 eleq12d x = a x F r A x a F r A a
103 99 102 imbi12d x = a φ ψ x F r A x φ a A r a × a r We a ω a a F r A a
104 1 2 3 4 5 6 7 pwfseqlem3 φ ψ x F r A x
105 89 103 104 chvarfv φ a A r a × a r We a ω a a F r A a
106 73 81 105 chvarfv φ a A s a × a s We a ω a a F s A a
107 106 eldifbd φ a A s a × a s We a ω a ¬ a F s a
108 107 expr φ a A s a × a s We a ω a ¬ a F s a
109 65 108 sylbird φ a A s a × a s We a ¬ a ω ¬ a F s a
110 109 con4d φ a A s a × a s We a a F s a a ω
111 48 56 110 vtocl φ a A W Z a × a W Z We a a F W Z a a ω
112 47 111 vtoclg Z V φ Z F W Z Z Z ω
113 29 112 mpcom φ Z F W Z Z Z ω
114 23 113 mpd φ Z ω
115 isfinite Z Fin Z ω
116 114 115 sylibr φ Z Fin
117 1 2 3 4 5 6 7 pwfseqlem2 Z Fin W Z V Z F W Z = H card Z
118 116 48 117 sylancl φ Z F W Z = H card Z
119 118 23 eqeltrrd φ H card Z Z
120 8 19 24 fpwwe2lem3 φ H card Z Z W Z -1 H card Z F W Z W Z -1 H card Z × W Z -1 H card Z = H card Z
121 119 120 mpdan φ W Z -1 H card Z F W Z W Z -1 H card Z × W Z -1 H card Z = H card Z
122 cnvimass W Z -1 H card Z dom W Z
123 27 simprd φ W Z Z × Z
124 dmss W Z Z × Z dom W Z dom Z × Z
125 123 124 syl φ dom W Z dom Z × Z
126 dmxpss dom Z × Z Z
127 125 126 sstrdi φ dom W Z Z
128 122 127 sstrid φ W Z -1 H card Z Z
129 116 128 ssfid φ W Z -1 H card Z Fin
130 48 inex1 W Z W Z -1 H card Z × W Z -1 H card Z V
131 1 2 3 4 5 6 7 pwfseqlem2 W Z -1 H card Z Fin W Z W Z -1 H card Z × W Z -1 H card Z V W Z -1 H card Z F W Z W Z -1 H card Z × W Z -1 H card Z = H card W Z -1 H card Z
132 129 130 131 sylancl φ W Z -1 H card Z F W Z W Z -1 H card Z × W Z -1 H card Z = H card W Z -1 H card Z
133 121 132 eqtr3d φ H card Z = H card W Z -1 H card Z
134 f1of1 H : ω 1-1 onto X H : ω 1-1 X
135 3 134 syl φ H : ω 1-1 X
136 ficardom Z Fin card Z ω
137 116 136 syl φ card Z ω
138 ficardom W Z -1 H card Z Fin card W Z -1 H card Z ω
139 129 138 syl φ card W Z -1 H card Z ω
140 f1fveq H : ω 1-1 X card Z ω card W Z -1 H card Z ω H card Z = H card W Z -1 H card Z card Z = card W Z -1 H card Z
141 135 137 139 140 syl12anc φ H card Z = H card W Z -1 H card Z card Z = card W Z -1 H card Z
142 133 141 mpbid φ card Z = card W Z -1 H card Z
143 142 eqcomd φ card W Z -1 H card Z = card Z
144 finnum W Z -1 H card Z Fin W Z -1 H card Z dom card
145 129 144 syl φ W Z -1 H card Z dom card
146 finnum Z Fin Z dom card
147 116 146 syl φ Z dom card
148 carden2 W Z -1 H card Z dom card Z dom card card W Z -1 H card Z = card Z W Z -1 H card Z Z
149 145 147 148 syl2anc φ card W Z -1 H card Z = card Z W Z -1 H card Z Z
150 143 149 mpbid φ W Z -1 H card Z Z
151 dfpss2 W Z -1 H card Z Z W Z -1 H card Z Z ¬ W Z -1 H card Z = Z
152 151 baib W Z -1 H card Z Z W Z -1 H card Z Z ¬ W Z -1 H card Z = Z
153 128 152 syl φ W Z -1 H card Z Z ¬ W Z -1 H card Z = Z
154 php3 Z Fin W Z -1 H card Z Z W Z -1 H card Z Z
155 sdomnen W Z -1 H card Z Z ¬ W Z -1 H card Z Z
156 154 155 syl Z Fin W Z -1 H card Z Z ¬ W Z -1 H card Z Z
157 156 ex Z Fin W Z -1 H card Z Z ¬ W Z -1 H card Z Z
158 116 157 syl φ W Z -1 H card Z Z ¬ W Z -1 H card Z Z
159 153 158 sylbird φ ¬ W Z -1 H card Z = Z ¬ W Z -1 H card Z Z
160 150 159 mt4d φ W Z -1 H card Z = Z
161 119 160 eleqtrrd φ H card Z W Z -1 H card Z
162 fvex H card Z V
163 162 eliniseg H card Z V H card Z W Z -1 H card Z H card Z W Z H card Z
164 162 163 ax-mp H card Z W Z -1 H card Z H card Z W Z H card Z
165 161 164 sylib φ H card Z W Z H card Z
166 26 simprd φ W Z We Z b Z [˙ W Z -1 b / v]˙ v F W Z v × v = b
167 166 simpld φ W Z We Z
168 weso W Z We Z W Z Or Z
169 167 168 syl φ W Z Or Z
170 sonr W Z Or Z H card Z Z ¬ H card Z W Z H card Z
171 169 119 170 syl2anc φ ¬ H card Z W Z H card Z
172 165 171 pm2.65i ¬ φ