Metamath Proof Explorer


Theorem pwfseqlem4a

Description: Lemma for pwfseqlem4 . (Contributed by Mario Carneiro, 7-Jun-2016)

Ref Expression
Hypotheses pwfseqlem4.g φ G : 𝒫 A 1-1 n ω A n
pwfseqlem4.x φ X A
pwfseqlem4.h φ H : ω 1-1 onto X
pwfseqlem4.ps ψ x A r x × x r We x ω x
pwfseqlem4.k φ ψ K : n ω x n 1-1 x
pwfseqlem4.d D = G w x | K -1 w ran G ¬ w G -1 K -1 w
pwfseqlem4.f F = x V , r V if x Fin H card x D z ω | ¬ D z x
Assertion pwfseqlem4a φ a A s a × a s We a a F s A

Proof

Step Hyp Ref Expression
1 pwfseqlem4.g φ G : 𝒫 A 1-1 n ω A n
2 pwfseqlem4.x φ X A
3 pwfseqlem4.h φ H : ω 1-1 onto X
4 pwfseqlem4.ps ψ x A r x × x r We x ω x
5 pwfseqlem4.k φ ψ K : n ω x n 1-1 x
6 pwfseqlem4.d D = G w x | K -1 w ran G ¬ w G -1 K -1 w
7 pwfseqlem4.f F = x V , r V if x Fin H card x D z ω | ¬ D z x
8 isfinite a Fin a ω
9 simpr φ a Fin a Fin
10 vex s V
11 1 2 3 4 5 6 7 pwfseqlem2 a Fin s V a F s = H card a
12 9 10 11 sylancl φ a Fin a F s = H card a
13 f1of H : ω 1-1 onto X H : ω X
14 3 13 syl φ H : ω X
15 14 2 fssd φ H : ω A
16 ficardom a Fin card a ω
17 ffvelrn H : ω A card a ω H card a A
18 15 16 17 syl2an φ a Fin H card a A
19 12 18 eqeltrd φ a Fin a F s A
20 19 ex φ a Fin a F s A
21 20 adantr φ a A s a × a s We a a Fin a F s A
22 8 21 syl5bir φ a A s a × a s We a a ω a F s A
23 omelon ω On
24 onenon ω On ω dom card
25 23 24 ax-mp ω dom card
26 simpr3 φ a A s a × a s We a s We a
27 26 19.8ad φ a A s a × a s We a s s We a
28 ween a dom card s s We a
29 27 28 sylibr φ a A s a × a s We a a dom card
30 domtri2 ω dom card a dom card ω a ¬ a ω
31 25 29 30 sylancr φ a A s a × a s We a ω a ¬ a ω
32 nfv r φ a A s a × a s We a ω a
33 nfcv _ r a
34 nfmpo2 _ r x V , r V if x Fin H card x D z ω | ¬ D z x
35 7 34 nfcxfr _ r F
36 nfcv _ r s
37 33 35 36 nfov _ r a F s
38 37 nfel1 r a F s A a
39 32 38 nfim r φ a A s a × a s We a ω a a F s A a
40 sseq1 r = s r a × a s a × a
41 weeq1 r = s r We a s We a
42 40 41 3anbi23d r = s a A r a × a r We a a A s a × a s We a
43 42 anbi1d r = s a A r a × a r We a ω a a A s a × a s We a ω a
44 43 anbi2d r = s φ a A r a × a r We a ω a φ a A s a × a s We a ω a
45 oveq2 r = s a F r = a F s
46 45 eleq1d r = s a F r A a a F s A a
47 44 46 imbi12d r = s φ a A r a × a r We a ω a a F r A a φ a A s a × a s We a ω a a F s A a
48 nfv x φ a A r a × a r We a ω a
49 nfcv _ x a
50 nfmpo1 _ x x V , r V if x Fin H card x D z ω | ¬ D z x
51 7 50 nfcxfr _ x F
52 nfcv _ x r
53 49 51 52 nfov _ x a F r
54 53 nfel1 x a F r A a
55 48 54 nfim x φ a A r a × a r We a ω a a F r A a
56 sseq1 x = a x A a A
57 xpeq12 x = a x = a x × x = a × a
58 57 anidms x = a x × x = a × a
59 58 sseq2d x = a r x × x r a × a
60 weeq2 x = a r We x r We a
61 56 59 60 3anbi123d x = a x A r x × x r We x a A r a × a r We a
62 breq2 x = a ω x ω a
63 61 62 anbi12d x = a x A r x × x r We x ω x a A r a × a r We a ω a
64 4 63 syl5bb x = a ψ a A r a × a r We a ω a
65 64 anbi2d x = a φ ψ φ a A r a × a r We a ω a
66 oveq1 x = a x F r = a F r
67 difeq2 x = a A x = A a
68 66 67 eleq12d x = a x F r A x a F r A a
69 65 68 imbi12d x = a φ ψ x F r A x φ a A r a × a r We a ω a a F r A a
70 1 2 3 4 5 6 7 pwfseqlem3 φ ψ x F r A x
71 55 69 70 chvarfv φ a A r a × a r We a ω a a F r A a
72 39 47 71 chvarfv φ a A s a × a s We a ω a a F s A a
73 72 eldifad φ a A s a × a s We a ω a a F s A
74 73 expr φ a A s a × a s We a ω a a F s A
75 31 74 sylbird φ a A s a × a s We a ¬ a ω a F s A
76 22 75 pm2.61d φ a A s a × a s We a a F s A