Metamath Proof Explorer


Theorem pwm1geoser

Description: The n-th power of a number decreased by 1 expressed by the finite geometric series 1 + A ^ 1 + A ^ 2 + ... + A ^ ( N - 1 ) . (Contributed by AV, 14-Aug-2021) (Proof shortened by AV, 19-Aug-2021)

Ref Expression
Hypotheses pwm1geoser.a φ A
pwm1geoser.n φ N 0
Assertion pwm1geoser φ A N 1 = A 1 k = 0 N 1 A k

Proof

Step Hyp Ref Expression
1 pwm1geoser.a φ A
2 pwm1geoser.n φ N 0
3 2 nn0zd φ N
4 1exp N 1 N = 1
5 3 4 syl φ 1 N = 1
6 5 eqcomd φ 1 = 1 N
7 6 oveq2d φ A N 1 = A N 1 N
8 1cnd φ 1
9 pwdif N 0 A 1 A N 1 N = A 1 k 0 ..^ N A k 1 N - k - 1
10 2 1 8 9 syl3anc φ A N 1 N = A 1 k 0 ..^ N A k 1 N - k - 1
11 fzoval N 0 ..^ N = 0 N 1
12 3 11 syl φ 0 ..^ N = 0 N 1
13 3 adantr φ k 0 ..^ N N
14 elfzoelz k 0 ..^ N k
15 14 adantl φ k 0 ..^ N k
16 13 15 zsubcld φ k 0 ..^ N N k
17 peano2zm N k N - k - 1
18 1exp N - k - 1 1 N - k - 1 = 1
19 16 17 18 3syl φ k 0 ..^ N 1 N - k - 1 = 1
20 19 oveq2d φ k 0 ..^ N A k 1 N - k - 1 = A k 1
21 1 adantr φ k 0 ..^ N A
22 elfzonn0 k 0 ..^ N k 0
23 22 adantl φ k 0 ..^ N k 0
24 21 23 expcld φ k 0 ..^ N A k
25 24 mulid1d φ k 0 ..^ N A k 1 = A k
26 20 25 eqtrd φ k 0 ..^ N A k 1 N - k - 1 = A k
27 12 26 sumeq12dv φ k 0 ..^ N A k 1 N - k - 1 = k = 0 N 1 A k
28 27 oveq2d φ A 1 k 0 ..^ N A k 1 N - k - 1 = A 1 k = 0 N 1 A k
29 7 10 28 3eqtrd φ A N 1 = A 1 k = 0 N 1 A k