Metamath Proof Explorer


Theorem pwmnd

Description: The power set of a class A is a monoid under union. (Contributed by AV, 27-Feb-2024)

Ref Expression
Hypotheses pwmnd.b Base M = 𝒫 A
pwmnd.p + M = x 𝒫 A , y 𝒫 A x y
Assertion pwmnd M Mnd

Proof

Step Hyp Ref Expression
1 pwmnd.b Base M = 𝒫 A
2 pwmnd.p + M = x 𝒫 A , y 𝒫 A x y
3 1 eleq2i a Base M a 𝒫 A
4 1 eleq2i b Base M b 𝒫 A
5 pwuncl a 𝒫 A b 𝒫 A a b 𝒫 A
6 1 2 pwmndgplus a 𝒫 A b 𝒫 A a + M b = a b
7 1 a1i a 𝒫 A b 𝒫 A Base M = 𝒫 A
8 5 6 7 3eltr4d a 𝒫 A b 𝒫 A a + M b Base M
9 1 eleq2i c Base M c 𝒫 A
10 unass a b c = a b c
11 6 adantr a 𝒫 A b 𝒫 A c 𝒫 A a + M b = a b
12 11 oveq1d a 𝒫 A b 𝒫 A c 𝒫 A a + M b + M c = a b + M c
13 1 2 pwmndgplus a b 𝒫 A c 𝒫 A a b + M c = a b c
14 5 13 sylan a 𝒫 A b 𝒫 A c 𝒫 A a b + M c = a b c
15 12 14 eqtrd a 𝒫 A b 𝒫 A c 𝒫 A a + M b + M c = a b c
16 1 2 pwmndgplus b 𝒫 A c 𝒫 A b + M c = b c
17 16 adantll a 𝒫 A b 𝒫 A c 𝒫 A b + M c = b c
18 17 oveq2d a 𝒫 A b 𝒫 A c 𝒫 A a + M b + M c = a + M b c
19 simpll a 𝒫 A b 𝒫 A c 𝒫 A a 𝒫 A
20 pwuncl b 𝒫 A c 𝒫 A b c 𝒫 A
21 20 adantll a 𝒫 A b 𝒫 A c 𝒫 A b c 𝒫 A
22 19 21 jca a 𝒫 A b 𝒫 A c 𝒫 A a 𝒫 A b c 𝒫 A
23 1 2 pwmndgplus a 𝒫 A b c 𝒫 A a + M b c = a b c
24 22 23 syl a 𝒫 A b 𝒫 A c 𝒫 A a + M b c = a b c
25 18 24 eqtrd a 𝒫 A b 𝒫 A c 𝒫 A a + M b + M c = a b c
26 10 15 25 3eqtr4a a 𝒫 A b 𝒫 A c 𝒫 A a + M b + M c = a + M b + M c
27 26 ex a 𝒫 A b 𝒫 A c 𝒫 A a + M b + M c = a + M b + M c
28 9 27 syl5bi a 𝒫 A b 𝒫 A c Base M a + M b + M c = a + M b + M c
29 28 ralrimiv a 𝒫 A b 𝒫 A c Base M a + M b + M c = a + M b + M c
30 8 29 jca a 𝒫 A b 𝒫 A a + M b Base M c Base M a + M b + M c = a + M b + M c
31 3 4 30 syl2anb a Base M b Base M a + M b Base M c Base M a + M b + M c = a + M b + M c
32 31 rgen2 a Base M b Base M a + M b Base M c Base M a + M b + M c = a + M b + M c
33 0ex V
34 eleq1 e = e Base M Base M
35 oveq1 e = e + M a = + M a
36 35 eqeq1d e = e + M a = a + M a = a
37 oveq2 e = a + M e = a + M
38 37 eqeq1d e = a + M e = a a + M = a
39 36 38 anbi12d e = e + M a = a a + M e = a + M a = a a + M = a
40 39 ralbidv e = a Base M e + M a = a a + M e = a a Base M + M a = a a + M = a
41 34 40 anbi12d e = e Base M a Base M e + M a = a a + M e = a Base M a Base M + M a = a a + M = a
42 0elpw 𝒫 A
43 42 1 eleqtrri Base M
44 1 2 pwmndgplus 𝒫 A a 𝒫 A + M a = a
45 0un a = a
46 44 45 eqtrdi 𝒫 A a 𝒫 A + M a = a
47 1 2 pwmndgplus a 𝒫 A 𝒫 A a + M = a
48 47 ancoms 𝒫 A a 𝒫 A a + M = a
49 un0 a = a
50 48 49 eqtrdi 𝒫 A a 𝒫 A a + M = a
51 46 50 jca 𝒫 A a 𝒫 A + M a = a a + M = a
52 42 51 mpan a 𝒫 A + M a = a a + M = a
53 3 52 sylbi a Base M + M a = a a + M = a
54 53 rgen a Base M + M a = a a + M = a
55 43 54 pm3.2i Base M a Base M + M a = a a + M = a
56 33 41 55 ceqsexv2d e e Base M a Base M e + M a = a a + M e = a
57 df-rex e Base M a Base M e + M a = a a + M e = a e e Base M a Base M e + M a = a a + M e = a
58 56 57 mpbir e Base M a Base M e + M a = a a + M e = a
59 32 58 pm3.2i a Base M b Base M a + M b Base M c Base M a + M b + M c = a + M b + M c e Base M a Base M e + M a = a a + M e = a
60 eqid Base M = Base M
61 eqid + M = + M
62 60 61 ismnd M Mnd a Base M b Base M a + M b Base M c Base M a + M b + M c = a + M b + M c e Base M a Base M e + M a = a a + M e = a
63 59 62 mpbir M Mnd