Step |
Hyp |
Ref |
Expression |
1 |
|
pwmnd.b |
|
2 |
|
pwmnd.p |
|
3 |
1
|
eleq2i |
|
4 |
1
|
eleq2i |
|
5 |
|
pwuncl |
|
6 |
1 2
|
pwmndgplus |
|
7 |
1
|
a1i |
|
8 |
5 6 7
|
3eltr4d |
|
9 |
1
|
eleq2i |
|
10 |
|
unass |
|
11 |
6
|
adantr |
|
12 |
11
|
oveq1d |
|
13 |
1 2
|
pwmndgplus |
|
14 |
5 13
|
sylan |
|
15 |
12 14
|
eqtrd |
|
16 |
1 2
|
pwmndgplus |
|
17 |
16
|
adantll |
|
18 |
17
|
oveq2d |
|
19 |
|
simpll |
|
20 |
|
pwuncl |
|
21 |
20
|
adantll |
|
22 |
19 21
|
jca |
|
23 |
1 2
|
pwmndgplus |
|
24 |
22 23
|
syl |
|
25 |
18 24
|
eqtrd |
|
26 |
10 15 25
|
3eqtr4a |
|
27 |
26
|
ex |
|
28 |
9 27
|
syl5bi |
|
29 |
28
|
ralrimiv |
|
30 |
8 29
|
jca |
|
31 |
3 4 30
|
syl2anb |
|
32 |
31
|
rgen2 |
|
33 |
|
0ex |
|
34 |
|
eleq1 |
|
35 |
|
oveq1 |
|
36 |
35
|
eqeq1d |
|
37 |
|
oveq2 |
|
38 |
37
|
eqeq1d |
|
39 |
36 38
|
anbi12d |
|
40 |
39
|
ralbidv |
|
41 |
34 40
|
anbi12d |
|
42 |
|
0elpw |
|
43 |
42 1
|
eleqtrri |
|
44 |
1 2
|
pwmndgplus |
|
45 |
|
0un |
|
46 |
44 45
|
eqtrdi |
|
47 |
1 2
|
pwmndgplus |
|
48 |
47
|
ancoms |
|
49 |
|
un0 |
|
50 |
48 49
|
eqtrdi |
|
51 |
46 50
|
jca |
|
52 |
42 51
|
mpan |
|
53 |
3 52
|
sylbi |
|
54 |
53
|
rgen |
|
55 |
43 54
|
pm3.2i |
|
56 |
33 41 55
|
ceqsexv2d |
|
57 |
|
df-rex |
|
58 |
56 57
|
mpbir |
|
59 |
32 58
|
pm3.2i |
|
60 |
|
eqid |
|
61 |
|
eqid |
|
62 |
60 61
|
ismnd |
|
63 |
59 62
|
mpbir |
|