Metamath Proof Explorer


Theorem pwmndid

Description: The identity of the monoid of the power set of a class A under union is the empty set. (Contributed by AV, 27-Feb-2024)

Ref Expression
Hypotheses pwmnd.b Base M = 𝒫 A
pwmnd.p + M = x 𝒫 A , y 𝒫 A x y
Assertion pwmndid 0 M =

Proof

Step Hyp Ref Expression
1 pwmnd.b Base M = 𝒫 A
2 pwmnd.p + M = x 𝒫 A , y 𝒫 A x y
3 0elpw 𝒫 A
4 1 eqcomi 𝒫 A = Base M
5 eqid 0 M = 0 M
6 eqid + M = + M
7 id 𝒫 A 𝒫 A
8 1 2 pwmndgplus 𝒫 A z 𝒫 A + M z = z
9 0un z = z
10 8 9 eqtrdi 𝒫 A z 𝒫 A + M z = z
11 1 2 pwmndgplus z 𝒫 A 𝒫 A z + M = z
12 11 ancoms 𝒫 A z 𝒫 A z + M = z
13 un0 z = z
14 12 13 eqtrdi 𝒫 A z 𝒫 A z + M = z
15 4 5 6 7 10 14 ismgmid2 𝒫 A = 0 M
16 15 eqcomd 𝒫 A 0 M =
17 3 16 ax-mp 0 M =