Metamath Proof Explorer


Theorem pwpr

Description: The power set of an unordered pair. (Contributed by NM, 1-May-2009)

Ref Expression
Assertion pwpr 𝒫 A B = A B A B

Proof

Step Hyp Ref Expression
1 sspr x A B x = x = A x = B x = A B
2 vex x V
3 2 elpr x A x = x = A
4 2 elpr x B A B x = B x = A B
5 3 4 orbi12i x A x B A B x = x = A x = B x = A B
6 1 5 bitr4i x A B x A x B A B
7 velpw x 𝒫 A B x A B
8 elun x A B A B x A x B A B
9 6 7 8 3bitr4i x 𝒫 A B x A B A B
10 9 eqriv 𝒫 A B = A B A B