Metamath Proof Explorer


Theorem pws0g

Description: Zero in a structure power of a monoid. (Contributed by Mario Carneiro, 11-Jan-2015)

Ref Expression
Hypotheses pwsmnd.y Y = R 𝑠 I
pws0g.z 0 ˙ = 0 R
Assertion pws0g R Mnd I V I × 0 ˙ = 0 Y

Proof

Step Hyp Ref Expression
1 pwsmnd.y Y = R 𝑠 I
2 pws0g.z 0 ˙ = 0 R
3 eqid Scalar R 𝑠 I × R = Scalar R 𝑠 I × R
4 simpr R Mnd I V I V
5 fvexd R Mnd I V Scalar R V
6 fconst6g R Mnd I × R : I Mnd
7 6 adantr R Mnd I V I × R : I Mnd
8 3 4 5 7 prds0g R Mnd I V 0 𝑔 I × R = 0 Scalar R 𝑠 I × R
9 fconstmpt I × 0 ˙ = x I 0 ˙
10 elex R Mnd R V
11 10 ad2antrr R Mnd I V x I R V
12 fconstmpt I × R = x I R
13 12 a1i R Mnd I V I × R = x I R
14 fn0g 0 𝑔 Fn V
15 14 a1i R Mnd I V 0 𝑔 Fn V
16 dffn5 0 𝑔 Fn V 0 𝑔 = r V 0 r
17 15 16 sylib R Mnd I V 0 𝑔 = r V 0 r
18 fveq2 r = R 0 r = 0 R
19 18 2 eqtr4di r = R 0 r = 0 ˙
20 11 13 17 19 fmptco R Mnd I V 0 𝑔 I × R = x I 0 ˙
21 9 20 eqtr4id R Mnd I V I × 0 ˙ = 0 𝑔 I × R
22 eqid Scalar R = Scalar R
23 1 22 pwsval R Mnd I V Y = Scalar R 𝑠 I × R
24 23 fveq2d R Mnd I V 0 Y = 0 Scalar R 𝑠 I × R
25 8 21 24 3eqtr4d R Mnd I V I × 0 ˙ = 0 Y