Step |
Hyp |
Ref |
Expression |
1 |
|
pwsco1rhm.y |
|
2 |
|
pwsco1rhm.z |
|
3 |
|
pwsco1rhm.c |
|
4 |
|
pwsco1rhm.r |
|
5 |
|
pwsco1rhm.a |
|
6 |
|
pwsco1rhm.b |
|
7 |
|
pwsco1rhm.f |
|
8 |
2
|
pwsring |
|
9 |
4 6 8
|
syl2anc |
|
10 |
1
|
pwsring |
|
11 |
4 5 10
|
syl2anc |
|
12 |
|
ringmnd |
|
13 |
4 12
|
syl |
|
14 |
1 2 3 13 5 6 7
|
pwsco1mhm |
|
15 |
|
ringgrp |
|
16 |
9 15
|
syl |
|
17 |
|
ringgrp |
|
18 |
11 17
|
syl |
|
19 |
|
ghmmhmb |
|
20 |
16 18 19
|
syl2anc |
|
21 |
14 20
|
eleqtrrd |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
|
eqid |
|
25 |
|
eqid |
|
26 |
25
|
ringmgp |
|
27 |
4 26
|
syl |
|
28 |
22 23 24 27 5 6 7
|
pwsco1mhm |
|
29 |
|
eqid |
|
30 |
2 29
|
pwsbas |
|
31 |
13 6 30
|
syl2anc |
|
32 |
31 3
|
eqtr4di |
|
33 |
25 29
|
mgpbas |
|
34 |
23 33
|
pwsbas |
|
35 |
27 6 34
|
syl2anc |
|
36 |
32 35
|
eqtr3d |
|
37 |
36
|
mpteq1d |
|
38 |
|
eqidd |
|
39 |
|
eqidd |
|
40 |
|
eqid |
|
41 |
|
eqid |
|
42 |
|
eqid |
|
43 |
|
eqid |
|
44 |
2 25 23 40 41 24 42 43
|
pwsmgp |
|
45 |
4 6 44
|
syl2anc |
|
46 |
45
|
simpld |
|
47 |
|
eqid |
|
48 |
|
eqid |
|
49 |
|
eqid |
|
50 |
|
eqid |
|
51 |
|
eqid |
|
52 |
1 25 22 47 48 49 50 51
|
pwsmgp |
|
53 |
4 5 52
|
syl2anc |
|
54 |
53
|
simpld |
|
55 |
45
|
simprd |
|
56 |
55
|
oveqdr |
|
57 |
53
|
simprd |
|
58 |
57
|
oveqdr |
|
59 |
38 39 46 54 56 58
|
mhmpropd |
|
60 |
28 37 59
|
3eltr4d |
|
61 |
21 60
|
jca |
|
62 |
40 47
|
isrhm |
|
63 |
9 11 61 62
|
syl21anbrc |
|