Metamath Proof Explorer


Theorem pwsco2rhm

Description: Left composition with a ring homomorphism yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses pwsco2rhm.y Y = R 𝑠 A
pwsco2rhm.z Z = S 𝑠 A
pwsco2rhm.b B = Base Y
pwsco2rhm.a φ A V
pwsco2rhm.f φ F R RingHom S
Assertion pwsco2rhm φ g B F g Y RingHom Z

Proof

Step Hyp Ref Expression
1 pwsco2rhm.y Y = R 𝑠 A
2 pwsco2rhm.z Z = S 𝑠 A
3 pwsco2rhm.b B = Base Y
4 pwsco2rhm.a φ A V
5 pwsco2rhm.f φ F R RingHom S
6 rhmrcl1 F R RingHom S R Ring
7 5 6 syl φ R Ring
8 1 pwsring R Ring A V Y Ring
9 7 4 8 syl2anc φ Y Ring
10 rhmrcl2 F R RingHom S S Ring
11 5 10 syl φ S Ring
12 2 pwsring S Ring A V Z Ring
13 11 4 12 syl2anc φ Z Ring
14 rhmghm F R RingHom S F R GrpHom S
15 5 14 syl φ F R GrpHom S
16 ghmmhm F R GrpHom S F R MndHom S
17 15 16 syl φ F R MndHom S
18 1 2 3 4 17 pwsco2mhm φ g B F g Y MndHom Z
19 ringgrp Y Ring Y Grp
20 9 19 syl φ Y Grp
21 ringgrp Z Ring Z Grp
22 13 21 syl φ Z Grp
23 ghmmhmb Y Grp Z Grp Y GrpHom Z = Y MndHom Z
24 20 22 23 syl2anc φ Y GrpHom Z = Y MndHom Z
25 18 24 eleqtrrd φ g B F g Y GrpHom Z
26 eqid mulGrp R 𝑠 A = mulGrp R 𝑠 A
27 eqid mulGrp S 𝑠 A = mulGrp S 𝑠 A
28 eqid Base mulGrp R 𝑠 A = Base mulGrp R 𝑠 A
29 eqid mulGrp R = mulGrp R
30 eqid mulGrp S = mulGrp S
31 29 30 rhmmhm F R RingHom S F mulGrp R MndHom mulGrp S
32 5 31 syl φ F mulGrp R MndHom mulGrp S
33 26 27 28 4 32 pwsco2mhm φ g Base mulGrp R 𝑠 A F g mulGrp R 𝑠 A MndHom mulGrp S 𝑠 A
34 eqid Base R = Base R
35 1 34 pwsbas R Ring A V Base R A = Base Y
36 7 4 35 syl2anc φ Base R A = Base Y
37 36 3 eqtr4di φ Base R A = B
38 29 ringmgp R Ring mulGrp R Mnd
39 7 38 syl φ mulGrp R Mnd
40 29 34 mgpbas Base R = Base mulGrp R
41 26 40 pwsbas mulGrp R Mnd A V Base R A = Base mulGrp R 𝑠 A
42 39 4 41 syl2anc φ Base R A = Base mulGrp R 𝑠 A
43 37 42 eqtr3d φ B = Base mulGrp R 𝑠 A
44 43 mpteq1d φ g B F g = g Base mulGrp R 𝑠 A F g
45 eqidd φ Base mulGrp Y = Base mulGrp Y
46 eqidd φ Base mulGrp Z = Base mulGrp Z
47 eqid mulGrp Y = mulGrp Y
48 eqid Base mulGrp Y = Base mulGrp Y
49 eqid + mulGrp Y = + mulGrp Y
50 eqid + mulGrp R 𝑠 A = + mulGrp R 𝑠 A
51 1 29 26 47 48 28 49 50 pwsmgp R Ring A V Base mulGrp Y = Base mulGrp R 𝑠 A + mulGrp Y = + mulGrp R 𝑠 A
52 7 4 51 syl2anc φ Base mulGrp Y = Base mulGrp R 𝑠 A + mulGrp Y = + mulGrp R 𝑠 A
53 52 simpld φ Base mulGrp Y = Base mulGrp R 𝑠 A
54 eqid mulGrp Z = mulGrp Z
55 eqid Base mulGrp Z = Base mulGrp Z
56 eqid Base mulGrp S 𝑠 A = Base mulGrp S 𝑠 A
57 eqid + mulGrp Z = + mulGrp Z
58 eqid + mulGrp S 𝑠 A = + mulGrp S 𝑠 A
59 2 30 27 54 55 56 57 58 pwsmgp S Ring A V Base mulGrp Z = Base mulGrp S 𝑠 A + mulGrp Z = + mulGrp S 𝑠 A
60 11 4 59 syl2anc φ Base mulGrp Z = Base mulGrp S 𝑠 A + mulGrp Z = + mulGrp S 𝑠 A
61 60 simpld φ Base mulGrp Z = Base mulGrp S 𝑠 A
62 52 simprd φ + mulGrp Y = + mulGrp R 𝑠 A
63 62 oveqdr φ x Base mulGrp Y y Base mulGrp Y x + mulGrp Y y = x + mulGrp R 𝑠 A y
64 60 simprd φ + mulGrp Z = + mulGrp S 𝑠 A
65 64 oveqdr φ x Base mulGrp Z y Base mulGrp Z x + mulGrp Z y = x + mulGrp S 𝑠 A y
66 45 46 53 61 63 65 mhmpropd φ mulGrp Y MndHom mulGrp Z = mulGrp R 𝑠 A MndHom mulGrp S 𝑠 A
67 33 44 66 3eltr4d φ g B F g mulGrp Y MndHom mulGrp Z
68 25 67 jca φ g B F g Y GrpHom Z g B F g mulGrp Y MndHom mulGrp Z
69 47 54 isrhm g B F g Y RingHom Z Y Ring Z Ring g B F g Y GrpHom Z g B F g mulGrp Y MndHom mulGrp Z
70 9 13 68 69 syl21anbrc φ g B F g Y RingHom Z