Metamath Proof Explorer


Theorem pwscrng

Description: A structure power of a commutative ring is a commutative ring. (Contributed by Mario Carneiro, 11-Mar-2015)

Ref Expression
Hypothesis pwscrng.y Y = R 𝑠 I
Assertion pwscrng R CRing I V Y CRing

Proof

Step Hyp Ref Expression
1 pwscrng.y Y = R 𝑠 I
2 eqid Scalar R = Scalar R
3 1 2 pwsval R CRing I V Y = Scalar R 𝑠 I × R
4 eqid Scalar R 𝑠 I × R = Scalar R 𝑠 I × R
5 simpr R CRing I V I V
6 fvexd R CRing I V Scalar R V
7 fconst6g R CRing I × R : I CRing
8 7 adantr R CRing I V I × R : I CRing
9 4 5 6 8 prdscrngd R CRing I V Scalar R 𝑠 I × R CRing
10 3 9 eqeltrd R CRing I V Y CRing