Metamath Proof Explorer


Theorem pwsdiagghm

Description: Diagonal homomorphism into a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses pwsdiagghm.y Y = R 𝑠 I
pwsdiagghm.b B = Base R
pwsdiagghm.f F = x B I × x
Assertion pwsdiagghm R Grp I W F R GrpHom Y

Proof

Step Hyp Ref Expression
1 pwsdiagghm.y Y = R 𝑠 I
2 pwsdiagghm.b B = Base R
3 pwsdiagghm.f F = x B I × x
4 grpmnd R Grp R Mnd
5 1 2 3 pwsdiagmhm R Mnd I W F R MndHom Y
6 4 5 sylan R Grp I W F R MndHom Y
7 1 pwsgrp R Grp I W Y Grp
8 ghmmhmb R Grp Y Grp R GrpHom Y = R MndHom Y
9 7 8 syldan R Grp I W R GrpHom Y = R MndHom Y
10 6 9 eleqtrrd R Grp I W F R GrpHom Y