Metamath Proof Explorer


Theorem pwsdiagrhm

Description: Diagonal homomorphism into a structure power (Rings). (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses pwsdiagrhm.y Y = R 𝑠 I
pwsdiagrhm.b B = Base R
pwsdiagrhm.f F = x B I × x
Assertion pwsdiagrhm R Ring I W F R RingHom Y

Proof

Step Hyp Ref Expression
1 pwsdiagrhm.y Y = R 𝑠 I
2 pwsdiagrhm.b B = Base R
3 pwsdiagrhm.f F = x B I × x
4 simpl R Ring I W R Ring
5 1 pwsring R Ring I W Y Ring
6 ringgrp R Ring R Grp
7 1 2 3 pwsdiagghm R Grp I W F R GrpHom Y
8 6 7 sylan R Ring I W F R GrpHom Y
9 eqid mulGrp R = mulGrp R
10 9 ringmgp R Ring mulGrp R Mnd
11 eqid mulGrp R 𝑠 I = mulGrp R 𝑠 I
12 9 2 mgpbas B = Base mulGrp R
13 11 12 3 pwsdiagmhm mulGrp R Mnd I W F mulGrp R MndHom mulGrp R 𝑠 I
14 10 13 sylan R Ring I W F mulGrp R MndHom mulGrp R 𝑠 I
15 eqidd R Ring I W Base mulGrp R = Base mulGrp R
16 eqidd R Ring I W Base mulGrp Y = Base mulGrp Y
17 eqid mulGrp Y = mulGrp Y
18 eqid Base mulGrp Y = Base mulGrp Y
19 eqid Base mulGrp R 𝑠 I = Base mulGrp R 𝑠 I
20 eqid + mulGrp Y = + mulGrp Y
21 eqid + mulGrp R 𝑠 I = + mulGrp R 𝑠 I
22 1 9 11 17 18 19 20 21 pwsmgp R Ring I W Base mulGrp Y = Base mulGrp R 𝑠 I + mulGrp Y = + mulGrp R 𝑠 I
23 22 simpld R Ring I W Base mulGrp Y = Base mulGrp R 𝑠 I
24 eqidd R Ring I W y Base mulGrp R z Base mulGrp R y + mulGrp R z = y + mulGrp R z
25 22 simprd R Ring I W + mulGrp Y = + mulGrp R 𝑠 I
26 25 oveqdr R Ring I W y Base mulGrp Y z Base mulGrp Y y + mulGrp Y z = y + mulGrp R 𝑠 I z
27 15 16 15 23 24 26 mhmpropd R Ring I W mulGrp R MndHom mulGrp Y = mulGrp R MndHom mulGrp R 𝑠 I
28 14 27 eleqtrrd R Ring I W F mulGrp R MndHom mulGrp Y
29 8 28 jca R Ring I W F R GrpHom Y F mulGrp R MndHom mulGrp Y
30 9 17 isrhm F R RingHom Y R Ring Y Ring F R GrpHom Y F mulGrp R MndHom mulGrp Y
31 4 5 29 30 syl21anbrc R Ring I W F R RingHom Y