Step |
Hyp |
Ref |
Expression |
1 |
|
suceq |
|
2 |
1
|
raleqdv |
|
3 |
|
iuneq1 |
|
4 |
|
fveq2 |
|
5 |
3 4
|
breq12d |
|
6 |
2 5
|
imbi12d |
|
7 |
|
suceq |
|
8 |
7
|
raleqdv |
|
9 |
|
iuneq1 |
|
10 |
|
fveq2 |
|
11 |
9 10
|
breq12d |
|
12 |
8 11
|
imbi12d |
|
13 |
|
suceq |
|
14 |
13
|
raleqdv |
|
15 |
|
iuneq1 |
|
16 |
|
fveq2 |
|
17 |
15 16
|
breq12d |
|
18 |
14 17
|
imbi12d |
|
19 |
|
0iun |
|
20 |
|
0ex |
|
21 |
20
|
sucid |
|
22 |
|
fveq2 |
|
23 |
|
pweq |
|
24 |
22 23
|
breq12d |
|
25 |
24
|
rspcv |
|
26 |
21 25
|
ax-mp |
|
27 |
20
|
canth2 |
|
28 |
|
ensym |
|
29 |
|
sdomentr |
|
30 |
27 28 29
|
sylancr |
|
31 |
26 30
|
syl |
|
32 |
19 31
|
eqbrtrid |
|
33 |
|
sssucid |
|
34 |
|
ssralv |
|
35 |
33 34
|
ax-mp |
|
36 |
|
pm2.27 |
|
37 |
35 36
|
syl |
|
38 |
37
|
adantl |
|
39 |
|
vex |
|
40 |
39
|
sucid |
|
41 |
|
elelsuc |
|
42 |
|
fveq2 |
|
43 |
|
pweq |
|
44 |
42 43
|
breq12d |
|
45 |
44
|
rspcv |
|
46 |
40 41 45
|
mp2b |
|
47 |
|
djuen |
|
48 |
46 46 47
|
syl2anc |
|
49 |
|
pwdju1 |
|
50 |
|
nnord |
|
51 |
|
ordirr |
|
52 |
50 51
|
syl |
|
53 |
|
dju1en |
|
54 |
52 53
|
mpdan |
|
55 |
|
pwen |
|
56 |
54 55
|
syl |
|
57 |
|
entr |
|
58 |
49 56 57
|
syl2anc |
|
59 |
|
entr |
|
60 |
48 58 59
|
syl2an |
|
61 |
39
|
sucex |
|
62 |
61
|
sucid |
|
63 |
|
fveq2 |
|
64 |
|
pweq |
|
65 |
63 64
|
breq12d |
|
66 |
65
|
rspcv |
|
67 |
62 66
|
ax-mp |
|
68 |
67
|
ensymd |
|
69 |
68
|
adantr |
|
70 |
|
entr |
|
71 |
60 69 70
|
syl2anc |
|
72 |
71
|
ancoms |
|
73 |
|
nnfi |
|
74 |
|
pwfi |
|
75 |
|
isfinite |
|
76 |
74 75
|
bitri |
|
77 |
73 76
|
sylib |
|
78 |
|
ensdomtr |
|
79 |
46 77 78
|
syl2an |
|
80 |
|
isfinite |
|
81 |
79 80
|
sylibr |
|
82 |
81
|
ancoms |
|
83 |
39 42
|
iunsuc |
|
84 |
|
fvex |
|
85 |
39 84
|
iunex |
|
86 |
|
fvex |
|
87 |
|
undjudom |
|
88 |
85 86 87
|
mp2an |
|
89 |
83 88
|
eqbrtri |
|
90 |
|
sdomtr |
|
91 |
80 90
|
sylan2b |
|
92 |
|
isfinite |
|
93 |
91 92
|
sylibr |
|
94 |
|
finnum |
|
95 |
93 94
|
syl |
|
96 |
|
finnum |
|
97 |
96
|
adantl |
|
98 |
|
cardadju |
|
99 |
95 97 98
|
syl2anc |
|
100 |
|
ficardom |
|
101 |
93 100
|
syl |
|
102 |
|
ficardom |
|
103 |
102
|
adantl |
|
104 |
|
cardid2 |
|
105 |
93 94 104
|
3syl |
|
106 |
|
simpl |
|
107 |
|
cardid2 |
|
108 |
|
ensym |
|
109 |
96 107 108
|
3syl |
|
110 |
109
|
adantl |
|
111 |
|
ensdomtr |
|
112 |
|
sdomentr |
|
113 |
111 112
|
sylan |
|
114 |
105 106 110 113
|
syl21anc |
|
115 |
|
cardon |
|
116 |
|
cardon |
|
117 |
|
onenon |
|
118 |
116 117
|
ax-mp |
|
119 |
|
cardsdomel |
|
120 |
115 118 119
|
mp2an |
|
121 |
|
cardidm |
|
122 |
121
|
eleq2i |
|
123 |
120 122
|
bitri |
|
124 |
114 123
|
sylib |
|
125 |
|
nnaordr |
|
126 |
125
|
biimpa |
|
127 |
101 103 103 124 126
|
syl31anc |
|
128 |
|
nnacl |
|
129 |
102 102 128
|
syl2anc |
|
130 |
|
cardnn |
|
131 |
129 130
|
syl |
|
132 |
131
|
adantl |
|
133 |
127 132
|
eleqtrrd |
|
134 |
|
cardsdomelir |
|
135 |
133 134
|
syl |
|
136 |
|
ensdomtr |
|
137 |
99 135 136
|
syl2anc |
|
138 |
|
cardadju |
|
139 |
96 96 138
|
syl2anc |
|
140 |
139
|
ensymd |
|
141 |
140
|
adantl |
|
142 |
|
sdomentr |
|
143 |
137 141 142
|
syl2anc |
|
144 |
|
domsdomtr |
|
145 |
89 143 144
|
sylancr |
|
146 |
145
|
expcom |
|
147 |
82 146
|
syl |
|
148 |
|
sdomentr |
|
149 |
148
|
expcom |
|
150 |
72 147 149
|
sylsyld |
|
151 |
38 150
|
syld |
|
152 |
151
|
ex |
|
153 |
152
|
com23 |
|
154 |
6 12 18 32 153
|
finds1 |
|
155 |
154
|
imp |
|