Metamath Proof Explorer


Theorem pwsdompw

Description: Lemma for domtriom . This is the equinumerosity version of the algebraic identity sum_ k e. n ( 2 ^ k ) = ( 2 ^ n ) - 1 . (Contributed by Mario Carneiro, 7-Feb-2013)

Ref Expression
Assertion pwsdompw n ω k suc n B k 𝒫 k k n B k B n

Proof

Step Hyp Ref Expression
1 suceq n = suc n = suc
2 1 raleqdv n = k suc n B k 𝒫 k k suc B k 𝒫 k
3 iuneq1 n = k n B k = k B k
4 fveq2 n = B n = B
5 3 4 breq12d n = k n B k B n k B k B
6 2 5 imbi12d n = k suc n B k 𝒫 k k n B k B n k suc B k 𝒫 k k B k B
7 suceq n = m suc n = suc m
8 7 raleqdv n = m k suc n B k 𝒫 k k suc m B k 𝒫 k
9 iuneq1 n = m k n B k = k m B k
10 fveq2 n = m B n = B m
11 9 10 breq12d n = m k n B k B n k m B k B m
12 8 11 imbi12d n = m k suc n B k 𝒫 k k n B k B n k suc m B k 𝒫 k k m B k B m
13 suceq n = suc m suc n = suc suc m
14 13 raleqdv n = suc m k suc n B k 𝒫 k k suc suc m B k 𝒫 k
15 iuneq1 n = suc m k n B k = k suc m B k
16 fveq2 n = suc m B n = B suc m
17 15 16 breq12d n = suc m k n B k B n k suc m B k B suc m
18 14 17 imbi12d n = suc m k suc n B k 𝒫 k k n B k B n k suc suc m B k 𝒫 k k suc m B k B suc m
19 0iun k B k =
20 0ex V
21 20 sucid suc
22 fveq2 k = B k = B
23 pweq k = 𝒫 k = 𝒫
24 22 23 breq12d k = B k 𝒫 k B 𝒫
25 24 rspcv suc k suc B k 𝒫 k B 𝒫
26 21 25 ax-mp k suc B k 𝒫 k B 𝒫
27 20 canth2 𝒫
28 ensym B 𝒫 𝒫 B
29 sdomentr 𝒫 𝒫 B B
30 27 28 29 sylancr B 𝒫 B
31 26 30 syl k suc B k 𝒫 k B
32 19 31 eqbrtrid k suc B k 𝒫 k k B k B
33 sssucid suc m suc suc m
34 ssralv suc m suc suc m k suc suc m B k 𝒫 k k suc m B k 𝒫 k
35 33 34 ax-mp k suc suc m B k 𝒫 k k suc m B k 𝒫 k
36 pm2.27 k suc m B k 𝒫 k k suc m B k 𝒫 k k m B k B m k m B k B m
37 35 36 syl k suc suc m B k 𝒫 k k suc m B k 𝒫 k k m B k B m k m B k B m
38 37 adantl m ω k suc suc m B k 𝒫 k k suc m B k 𝒫 k k m B k B m k m B k B m
39 vex m V
40 39 sucid m suc m
41 elelsuc m suc m m suc suc m
42 fveq2 k = m B k = B m
43 pweq k = m 𝒫 k = 𝒫 m
44 42 43 breq12d k = m B k 𝒫 k B m 𝒫 m
45 44 rspcv m suc suc m k suc suc m B k 𝒫 k B m 𝒫 m
46 40 41 45 mp2b k suc suc m B k 𝒫 k B m 𝒫 m
47 djuen B m 𝒫 m B m 𝒫 m B m ⊔︀ B m 𝒫 m ⊔︀ 𝒫 m
48 46 46 47 syl2anc k suc suc m B k 𝒫 k B m ⊔︀ B m 𝒫 m ⊔︀ 𝒫 m
49 pwdju1 m ω 𝒫 m ⊔︀ 𝒫 m 𝒫 m ⊔︀ 1 𝑜
50 nnord m ω Ord m
51 ordirr Ord m ¬ m m
52 50 51 syl m ω ¬ m m
53 dju1en m ω ¬ m m m ⊔︀ 1 𝑜 suc m
54 52 53 mpdan m ω m ⊔︀ 1 𝑜 suc m
55 pwen m ⊔︀ 1 𝑜 suc m 𝒫 m ⊔︀ 1 𝑜 𝒫 suc m
56 54 55 syl m ω 𝒫 m ⊔︀ 1 𝑜 𝒫 suc m
57 entr 𝒫 m ⊔︀ 𝒫 m 𝒫 m ⊔︀ 1 𝑜 𝒫 m ⊔︀ 1 𝑜 𝒫 suc m 𝒫 m ⊔︀ 𝒫 m 𝒫 suc m
58 49 56 57 syl2anc m ω 𝒫 m ⊔︀ 𝒫 m 𝒫 suc m
59 entr B m ⊔︀ B m 𝒫 m ⊔︀ 𝒫 m 𝒫 m ⊔︀ 𝒫 m 𝒫 suc m B m ⊔︀ B m 𝒫 suc m
60 48 58 59 syl2an k suc suc m B k 𝒫 k m ω B m ⊔︀ B m 𝒫 suc m
61 39 sucex suc m V
62 61 sucid suc m suc suc m
63 fveq2 k = suc m B k = B suc m
64 pweq k = suc m 𝒫 k = 𝒫 suc m
65 63 64 breq12d k = suc m B k 𝒫 k B suc m 𝒫 suc m
66 65 rspcv suc m suc suc m k suc suc m B k 𝒫 k B suc m 𝒫 suc m
67 62 66 ax-mp k suc suc m B k 𝒫 k B suc m 𝒫 suc m
68 67 ensymd k suc suc m B k 𝒫 k 𝒫 suc m B suc m
69 68 adantr k suc suc m B k 𝒫 k m ω 𝒫 suc m B suc m
70 entr B m ⊔︀ B m 𝒫 suc m 𝒫 suc m B suc m B m ⊔︀ B m B suc m
71 60 69 70 syl2anc k suc suc m B k 𝒫 k m ω B m ⊔︀ B m B suc m
72 71 ancoms m ω k suc suc m B k 𝒫 k B m ⊔︀ B m B suc m
73 nnfi m ω m Fin
74 pwfi m Fin 𝒫 m Fin
75 isfinite 𝒫 m Fin 𝒫 m ω
76 74 75 bitri m Fin 𝒫 m ω
77 73 76 sylib m ω 𝒫 m ω
78 ensdomtr B m 𝒫 m 𝒫 m ω B m ω
79 46 77 78 syl2an k suc suc m B k 𝒫 k m ω B m ω
80 isfinite B m Fin B m ω
81 79 80 sylibr k suc suc m B k 𝒫 k m ω B m Fin
82 81 ancoms m ω k suc suc m B k 𝒫 k B m Fin
83 39 42 iunsuc k suc m B k = k m B k B m
84 fvex B k V
85 39 84 iunex k m B k V
86 fvex B m V
87 undjudom k m B k V B m V k m B k B m k m B k ⊔︀ B m
88 85 86 87 mp2an k m B k B m k m B k ⊔︀ B m
89 83 88 eqbrtri k suc m B k k m B k ⊔︀ B m
90 sdomtr k m B k B m B m ω k m B k ω
91 80 90 sylan2b k m B k B m B m Fin k m B k ω
92 isfinite k m B k Fin k m B k ω
93 91 92 sylibr k m B k B m B m Fin k m B k Fin
94 finnum k m B k Fin k m B k dom card
95 93 94 syl k m B k B m B m Fin k m B k dom card
96 finnum B m Fin B m dom card
97 96 adantl k m B k B m B m Fin B m dom card
98 cardadju k m B k dom card B m dom card k m B k ⊔︀ B m card k m B k + 𝑜 card B m
99 95 97 98 syl2anc k m B k B m B m Fin k m B k ⊔︀ B m card k m B k + 𝑜 card B m
100 ficardom k m B k Fin card k m B k ω
101 93 100 syl k m B k B m B m Fin card k m B k ω
102 ficardom B m Fin card B m ω
103 102 adantl k m B k B m B m Fin card B m ω
104 cardid2 k m B k dom card card k m B k k m B k
105 93 94 104 3syl k m B k B m B m Fin card k m B k k m B k
106 simpl k m B k B m B m Fin k m B k B m
107 cardid2 B m dom card card B m B m
108 ensym card B m B m B m card B m
109 96 107 108 3syl B m Fin B m card B m
110 109 adantl k m B k B m B m Fin B m card B m
111 ensdomtr card k m B k k m B k k m B k B m card k m B k B m
112 sdomentr card k m B k B m B m card B m card k m B k card B m
113 111 112 sylan card k m B k k m B k k m B k B m B m card B m card k m B k card B m
114 105 106 110 113 syl21anc k m B k B m B m Fin card k m B k card B m
115 cardon card k m B k On
116 cardon card B m On
117 onenon card B m On card B m dom card
118 116 117 ax-mp card B m dom card
119 cardsdomel card k m B k On card B m dom card card k m B k card B m card k m B k card card B m
120 115 118 119 mp2an card k m B k card B m card k m B k card card B m
121 cardidm card card B m = card B m
122 121 eleq2i card k m B k card card B m card k m B k card B m
123 120 122 bitri card k m B k card B m card k m B k card B m
124 114 123 sylib k m B k B m B m Fin card k m B k card B m
125 nnaordr card k m B k ω card B m ω card B m ω card k m B k card B m card k m B k + 𝑜 card B m card B m + 𝑜 card B m
126 125 biimpa card k m B k ω card B m ω card B m ω card k m B k card B m card k m B k + 𝑜 card B m card B m + 𝑜 card B m
127 101 103 103 124 126 syl31anc k m B k B m B m Fin card k m B k + 𝑜 card B m card B m + 𝑜 card B m
128 nnacl card B m ω card B m ω card B m + 𝑜 card B m ω
129 102 102 128 syl2anc B m Fin card B m + 𝑜 card B m ω
130 cardnn card B m + 𝑜 card B m ω card card B m + 𝑜 card B m = card B m + 𝑜 card B m
131 129 130 syl B m Fin card card B m + 𝑜 card B m = card B m + 𝑜 card B m
132 131 adantl k m B k B m B m Fin card card B m + 𝑜 card B m = card B m + 𝑜 card B m
133 127 132 eleqtrrd k m B k B m B m Fin card k m B k + 𝑜 card B m card card B m + 𝑜 card B m
134 cardsdomelir card k m B k + 𝑜 card B m card card B m + 𝑜 card B m card k m B k + 𝑜 card B m card B m + 𝑜 card B m
135 133 134 syl k m B k B m B m Fin card k m B k + 𝑜 card B m card B m + 𝑜 card B m
136 ensdomtr k m B k ⊔︀ B m card k m B k + 𝑜 card B m card k m B k + 𝑜 card B m card B m + 𝑜 card B m k m B k ⊔︀ B m card B m + 𝑜 card B m
137 99 135 136 syl2anc k m B k B m B m Fin k m B k ⊔︀ B m card B m + 𝑜 card B m
138 cardadju B m dom card B m dom card B m ⊔︀ B m card B m + 𝑜 card B m
139 96 96 138 syl2anc B m Fin B m ⊔︀ B m card B m + 𝑜 card B m
140 139 ensymd B m Fin card B m + 𝑜 card B m B m ⊔︀ B m
141 140 adantl k m B k B m B m Fin card B m + 𝑜 card B m B m ⊔︀ B m
142 sdomentr k m B k ⊔︀ B m card B m + 𝑜 card B m card B m + 𝑜 card B m B m ⊔︀ B m k m B k ⊔︀ B m B m ⊔︀ B m
143 137 141 142 syl2anc k m B k B m B m Fin k m B k ⊔︀ B m B m ⊔︀ B m
144 domsdomtr k suc m B k k m B k ⊔︀ B m k m B k ⊔︀ B m B m ⊔︀ B m k suc m B k B m ⊔︀ B m
145 89 143 144 sylancr k m B k B m B m Fin k suc m B k B m ⊔︀ B m
146 145 expcom B m Fin k m B k B m k suc m B k B m ⊔︀ B m
147 82 146 syl m ω k suc suc m B k 𝒫 k k m B k B m k suc m B k B m ⊔︀ B m
148 sdomentr k suc m B k B m ⊔︀ B m B m ⊔︀ B m B suc m k suc m B k B suc m
149 148 expcom B m ⊔︀ B m B suc m k suc m B k B m ⊔︀ B m k suc m B k B suc m
150 72 147 149 sylsyld m ω k suc suc m B k 𝒫 k k m B k B m k suc m B k B suc m
151 38 150 syld m ω k suc suc m B k 𝒫 k k suc m B k 𝒫 k k m B k B m k suc m B k B suc m
152 151 ex m ω k suc suc m B k 𝒫 k k suc m B k 𝒫 k k m B k B m k suc m B k B suc m
153 152 com23 m ω k suc m B k 𝒫 k k m B k B m k suc suc m B k 𝒫 k k suc m B k B suc m
154 6 12 18 32 153 finds1 n ω k suc n B k 𝒫 k k n B k B n
155 154 imp n ω k suc n B k 𝒫 k k n B k B n