Database
BASIC STRUCTURES
Extensible structures
Definition of the structure product
pwselbas
Metamath Proof Explorer
Description: An element of a structure power is a function from the index set to the
base set of the structure. (Contributed by Mario Carneiro , 11-Jan-2015) (Revised by Mario Carneiro , 5-Jun-2015)
Ref
Expression
Hypotheses
pwsbas.y
⊢ Y = R ↑ 𝑠 I
pwsbas.f
⊢ B = Base R
pwselbas.v
⊢ V = Base Y
pwselbas.r
⊢ φ → R ∈ W
pwselbas.i
⊢ φ → I ∈ Z
pwselbas.x
⊢ φ → X ∈ V
Assertion
pwselbas
⊢ φ → X : I ⟶ B
Proof
Step
Hyp
Ref
Expression
1
pwsbas.y
⊢ Y = R ↑ 𝑠 I
2
pwsbas.f
⊢ B = Base R
3
pwselbas.v
⊢ V = Base Y
4
pwselbas.r
⊢ φ → R ∈ W
5
pwselbas.i
⊢ φ → I ∈ Z
6
pwselbas.x
⊢ φ → X ∈ V
7
1 2 3
pwselbasb
⊢ R ∈ W ∧ I ∈ Z → X ∈ V ↔ X : I ⟶ B
8
4 5 7
syl2anc
⊢ φ → X ∈ V ↔ X : I ⟶ B
9
6 8
mpbid
⊢ φ → X : I ⟶ B