Database
BASIC ALGEBRAIC STRUCTURES
Groups
Definition and basic properties
pwsgrp
Next ⟩
pwsinvg
Metamath Proof Explorer
Ascii
Unicode
Theorem
pwsgrp
Description:
A structure power of a group is a group.
(Contributed by
Mario Carneiro
, 11-Jan-2015)
Ref
Expression
Hypothesis
pwsgrp.y
⊢
Y
=
R
↑
𝑠
I
Assertion
pwsgrp
⊢
R
∈
Grp
∧
I
∈
V
→
Y
∈
Grp
Proof
Step
Hyp
Ref
Expression
1
pwsgrp.y
⊢
Y
=
R
↑
𝑠
I
2
eqid
⊢
Scalar
⁡
R
=
Scalar
⁡
R
3
1
2
pwsval
⊢
R
∈
Grp
∧
I
∈
V
→
Y
=
Scalar
⁡
R
⨉
𝑠
I
×
R
4
eqid
⊢
Scalar
⁡
R
⨉
𝑠
I
×
R
=
Scalar
⁡
R
⨉
𝑠
I
×
R
5
simpr
⊢
R
∈
Grp
∧
I
∈
V
→
I
∈
V
6
fvexd
⊢
R
∈
Grp
∧
I
∈
V
→
Scalar
⁡
R
∈
V
7
fconst6g
⊢
R
∈
Grp
→
I
×
R
:
I
⟶
Grp
8
7
adantr
⊢
R
∈
Grp
∧
I
∈
V
→
I
×
R
:
I
⟶
Grp
9
4
5
6
8
prdsgrpd
⊢
R
∈
Grp
∧
I
∈
V
→
Scalar
⁡
R
⨉
𝑠
I
×
R
∈
Grp
10
3
9
eqeltrd
⊢
R
∈
Grp
∧
I
∈
V
→
Y
∈
Grp