Metamath Proof Explorer


Theorem pwsgrp

Description: A structure power of a group is a group. (Contributed by Mario Carneiro, 11-Jan-2015)

Ref Expression
Hypothesis pwsgrp.y Y = R 𝑠 I
Assertion pwsgrp R Grp I V Y Grp

Proof

Step Hyp Ref Expression
1 pwsgrp.y Y = R 𝑠 I
2 eqid Scalar R = Scalar R
3 1 2 pwsval R Grp I V Y = Scalar R 𝑠 I × R
4 eqid Scalar R 𝑠 I × R = Scalar R 𝑠 I × R
5 simpr R Grp I V I V
6 fvexd R Grp I V Scalar R V
7 fconst6g R Grp I × R : I Grp
8 7 adantr R Grp I V I × R : I Grp
9 4 5 6 8 prdsgrpd R Grp I V Scalar R 𝑠 I × R Grp
10 3 9 eqeltrd R Grp I V Y Grp