Metamath Proof Explorer


Theorem pwsinvg

Description: Negation in a group power. (Contributed by Mario Carneiro, 11-Jan-2015)

Ref Expression
Hypotheses pwsgrp.y Y = R 𝑠 I
pwsinvg.b B = Base Y
pwsinvg.m M = inv g R
pwsinvg.n N = inv g Y
Assertion pwsinvg R Grp I V X B N X = M X

Proof

Step Hyp Ref Expression
1 pwsgrp.y Y = R 𝑠 I
2 pwsinvg.b B = Base Y
3 pwsinvg.m M = inv g R
4 pwsinvg.n N = inv g Y
5 eqid Scalar R 𝑠 I × R = Scalar R 𝑠 I × R
6 simp2 R Grp I V X B I V
7 fvexd R Grp I V X B Scalar R V
8 simp1 R Grp I V X B R Grp
9 fconst6g R Grp I × R : I Grp
10 8 9 syl R Grp I V X B I × R : I Grp
11 eqid Base Scalar R 𝑠 I × R = Base Scalar R 𝑠 I × R
12 eqid inv g Scalar R 𝑠 I × R = inv g Scalar R 𝑠 I × R
13 simp3 R Grp I V X B X B
14 eqid Scalar R = Scalar R
15 1 14 pwsval R Grp I V Y = Scalar R 𝑠 I × R
16 15 3adant3 R Grp I V X B Y = Scalar R 𝑠 I × R
17 16 fveq2d R Grp I V X B Base Y = Base Scalar R 𝑠 I × R
18 2 17 eqtrid R Grp I V X B B = Base Scalar R 𝑠 I × R
19 13 18 eleqtrd R Grp I V X B X Base Scalar R 𝑠 I × R
20 5 6 7 10 11 12 19 prdsinvgd R Grp I V X B inv g Scalar R 𝑠 I × R X = x I inv g I × R x X x
21 fvconst2g R Grp x I I × R x = R
22 8 21 sylan R Grp I V X B x I I × R x = R
23 22 fveq2d R Grp I V X B x I inv g I × R x = inv g R
24 23 3 eqtr4di R Grp I V X B x I inv g I × R x = M
25 24 fveq1d R Grp I V X B x I inv g I × R x X x = M X x
26 25 mpteq2dva R Grp I V X B x I inv g I × R x X x = x I M X x
27 20 26 eqtrd R Grp I V X B inv g Scalar R 𝑠 I × R X = x I M X x
28 16 fveq2d R Grp I V X B inv g Y = inv g Scalar R 𝑠 I × R
29 4 28 eqtrid R Grp I V X B N = inv g Scalar R 𝑠 I × R
30 29 fveq1d R Grp I V X B N X = inv g Scalar R 𝑠 I × R X
31 eqid Base R = Base R
32 1 31 2 8 6 13 pwselbas R Grp I V X B X : I Base R
33 32 ffvelrnda R Grp I V X B x I X x Base R
34 32 feqmptd R Grp I V X B X = x I X x
35 31 3 grpinvf R Grp M : Base R Base R
36 8 35 syl R Grp I V X B M : Base R Base R
37 36 feqmptd R Grp I V X B M = y Base R M y
38 fveq2 y = X x M y = M X x
39 33 34 37 38 fmptco R Grp I V X B M X = x I M X x
40 27 30 39 3eqtr4d R Grp I V X B N X = M X