Metamath Proof Explorer


Theorem pwsleval

Description: Ordering in a structure power. (Contributed by Mario Carneiro, 16-Aug-2015)

Ref Expression
Hypotheses pwsle.y Y = R 𝑠 I
pwsle.v B = Base Y
pwsle.o O = R
pwsle.l ˙ = Y
pwsleval.r φ R V
pwsleval.i φ I W
pwsleval.a φ F B
pwsleval.b φ G B
Assertion pwsleval φ F ˙ G x I F x O G x

Proof

Step Hyp Ref Expression
1 pwsle.y Y = R 𝑠 I
2 pwsle.v B = Base Y
3 pwsle.o O = R
4 pwsle.l ˙ = Y
5 pwsleval.r φ R V
6 pwsleval.i φ I W
7 pwsleval.a φ F B
8 pwsleval.b φ G B
9 1 2 3 4 pwsle R V I W ˙ = r O B × B
10 5 6 9 syl2anc φ ˙ = r O B × B
11 10 breqd φ F ˙ G F r O B × B G
12 brinxp F B G B F O f G F r O B × B G
13 7 8 12 syl2anc φ F O f G F r O B × B G
14 eqid Base R = Base R
15 1 14 2 5 6 7 pwselbas φ F : I Base R
16 15 ffnd φ F Fn I
17 1 14 2 5 6 8 pwselbas φ G : I Base R
18 17 ffnd φ G Fn I
19 inidm I I = I
20 eqidd φ x I F x = F x
21 eqidd φ x I G x = G x
22 16 18 7 8 19 20 21 ofrfvalg φ F O f G x I F x O G x
23 11 13 22 3bitr2d φ F ˙ G x I F x O G x