Metamath Proof Explorer


Theorem pwslmod

Description: A structure power of a left module is a left module. (Contributed by Mario Carneiro, 11-Jan-2015)

Ref Expression
Hypothesis pwslmod.y Y = R 𝑠 I
Assertion pwslmod R LMod I V Y LMod

Proof

Step Hyp Ref Expression
1 pwslmod.y Y = R 𝑠 I
2 eqid Scalar R = Scalar R
3 1 2 pwsval R LMod I V Y = Scalar R 𝑠 I × R
4 eqid Scalar R 𝑠 I × R = Scalar R 𝑠 I × R
5 2 lmodring R LMod Scalar R Ring
6 5 adantr R LMod I V Scalar R Ring
7 simpr R LMod I V I V
8 fconst6g R LMod I × R : I LMod
9 8 adantr R LMod I V I × R : I LMod
10 fvconst2g R LMod x I I × R x = R
11 10 adantlr R LMod I V x I I × R x = R
12 11 fveq2d R LMod I V x I Scalar I × R x = Scalar R
13 4 6 7 9 12 prdslmodd R LMod I V Scalar R 𝑠 I × R LMod
14 3 13 eqeltrd R LMod I V Y LMod