Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stefan O'Rear
Addenda for structure powers
pwslnmlem1
Next ⟩
pwslnmlem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
pwslnmlem1
Description:
First powers are Noetherian.
(Contributed by
Stefan O'Rear
, 24-Jan-2015)
Ref
Expression
Hypothesis
pwslnmlem1.y
⊢
Y
=
W
↑
𝑠
i
Assertion
pwslnmlem1
⊢
W
∈
LNoeM
→
Y
∈
LNoeM
Proof
Step
Hyp
Ref
Expression
1
pwslnmlem1.y
⊢
Y
=
W
↑
𝑠
i
2
lnmlmod
⊢
W
∈
LNoeM
→
W
∈
LMod
3
snex
⊢
i
∈
V
4
eqid
⊢
Base
W
=
Base
W
5
eqid
⊢
x
∈
Base
W
⟼
i
×
x
=
x
∈
Base
W
⟼
i
×
x
6
1
4
5
pwsdiaglmhm
⊢
W
∈
LMod
∧
i
∈
V
→
x
∈
Base
W
⟼
i
×
x
∈
W
LMHom
Y
7
2
3
6
sylancl
⊢
W
∈
LNoeM
→
x
∈
Base
W
⟼
i
×
x
∈
W
LMHom
Y
8
id
⊢
W
∈
LNoeM
→
W
∈
LNoeM
9
eqid
⊢
Base
Y
=
Base
Y
10
1
4
5
9
pwssnf1o
⊢
W
∈
LNoeM
∧
i
∈
V
→
x
∈
Base
W
⟼
i
×
x
:
Base
W
⟶
1-1 onto
Base
Y
11
10
elvd
⊢
W
∈
LNoeM
→
x
∈
Base
W
⟼
i
×
x
:
Base
W
⟶
1-1 onto
Base
Y
12
f1ofo
⊢
x
∈
Base
W
⟼
i
×
x
:
Base
W
⟶
1-1 onto
Base
Y
→
x
∈
Base
W
⟼
i
×
x
:
Base
W
⟶
onto
Base
Y
13
forn
⊢
x
∈
Base
W
⟼
i
×
x
:
Base
W
⟶
onto
Base
Y
→
ran
⁡
x
∈
Base
W
⟼
i
×
x
=
Base
Y
14
11
12
13
3syl
⊢
W
∈
LNoeM
→
ran
⁡
x
∈
Base
W
⟼
i
×
x
=
Base
Y
15
9
lnmepi
⊢
x
∈
Base
W
⟼
i
×
x
∈
W
LMHom
Y
∧
W
∈
LNoeM
∧
ran
⁡
x
∈
Base
W
⟼
i
×
x
=
Base
Y
→
Y
∈
LNoeM
16
7
8
14
15
syl3anc
⊢
W
∈
LNoeM
→
Y
∈
LNoeM