Metamath Proof Explorer


Theorem pwslnmlem1

Description: First powers are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypothesis pwslnmlem1.y Y = W 𝑠 i
Assertion pwslnmlem1 W LNoeM Y LNoeM

Proof

Step Hyp Ref Expression
1 pwslnmlem1.y Y = W 𝑠 i
2 lnmlmod W LNoeM W LMod
3 snex i V
4 eqid Base W = Base W
5 eqid x Base W i × x = x Base W i × x
6 1 4 5 pwsdiaglmhm W LMod i V x Base W i × x W LMHom Y
7 2 3 6 sylancl W LNoeM x Base W i × x W LMHom Y
8 id W LNoeM W LNoeM
9 eqid Base Y = Base Y
10 1 4 5 9 pwssnf1o W LNoeM i V x Base W i × x : Base W 1-1 onto Base Y
11 10 elvd W LNoeM x Base W i × x : Base W 1-1 onto Base Y
12 f1ofo x Base W i × x : Base W 1-1 onto Base Y x Base W i × x : Base W onto Base Y
13 forn x Base W i × x : Base W onto Base Y ran x Base W i × x = Base Y
14 11 12 13 3syl W LNoeM ran x Base W i × x = Base Y
15 9 lnmepi x Base W i × x W LMHom Y W LNoeM ran x Base W i × x = Base Y Y LNoeM
16 7 8 14 15 syl3anc W LNoeM Y LNoeM