Metamath Proof Explorer


Theorem pwsmgp

Description: The multiplicative group of the power structure resembles the power of the multiplicative group. (Contributed by Mario Carneiro, 12-Mar-2015)

Ref Expression
Hypotheses pwsmgp.y Y = R 𝑠 I
pwsmgp.m M = mulGrp R
pwsmgp.z Z = M 𝑠 I
pwsmgp.n N = mulGrp Y
pwsmgp.b B = Base N
pwsmgp.c C = Base Z
pwsmgp.p + ˙ = + N
pwsmgp.q ˙ = + Z
Assertion pwsmgp R V I W B = C + ˙ = ˙

Proof

Step Hyp Ref Expression
1 pwsmgp.y Y = R 𝑠 I
2 pwsmgp.m M = mulGrp R
3 pwsmgp.z Z = M 𝑠 I
4 pwsmgp.n N = mulGrp Y
5 pwsmgp.b B = Base N
6 pwsmgp.c C = Base Z
7 pwsmgp.p + ˙ = + N
8 pwsmgp.q ˙ = + Z
9 eqid Scalar R 𝑠 I × R = Scalar R 𝑠 I × R
10 eqid mulGrp Scalar R 𝑠 I × R = mulGrp Scalar R 𝑠 I × R
11 eqid Scalar R 𝑠 mulGrp I × R = Scalar R 𝑠 mulGrp I × R
12 simpr R V I W I W
13 fvexd R V I W Scalar R V
14 fnconstg R V I × R Fn I
15 14 adantr R V I W I × R Fn I
16 9 10 11 12 13 15 prdsmgp R V I W Base mulGrp Scalar R 𝑠 I × R = Base Scalar R 𝑠 mulGrp I × R + mulGrp Scalar R 𝑠 I × R = + Scalar R 𝑠 mulGrp I × R
17 16 simpld R V I W Base mulGrp Scalar R 𝑠 I × R = Base Scalar R 𝑠 mulGrp I × R
18 eqid Scalar R = Scalar R
19 1 18 pwsval R V I W Y = Scalar R 𝑠 I × R
20 19 fveq2d R V I W mulGrp Y = mulGrp Scalar R 𝑠 I × R
21 4 20 eqtrid R V I W N = mulGrp Scalar R 𝑠 I × R
22 21 fveq2d R V I W Base N = Base mulGrp Scalar R 𝑠 I × R
23 2 fvexi M V
24 eqid M 𝑠 I = M 𝑠 I
25 eqid Scalar M = Scalar M
26 24 25 pwsval M V I W M 𝑠 I = Scalar M 𝑠 I × M
27 23 12 26 sylancr R V I W M 𝑠 I = Scalar M 𝑠 I × M
28 2 18 mgpsca Scalar R = Scalar M
29 28 eqcomi Scalar M = Scalar R
30 29 a1i R V I W Scalar M = Scalar R
31 2 sneqi M = mulGrp R
32 31 xpeq2i I × M = I × mulGrp R
33 fnmgp mulGrp Fn V
34 elex R V R V
35 34 adantr R V I W R V
36 fcoconst mulGrp Fn V R V mulGrp I × R = I × mulGrp R
37 33 35 36 sylancr R V I W mulGrp I × R = I × mulGrp R
38 32 37 eqtr4id R V I W I × M = mulGrp I × R
39 30 38 oveq12d R V I W Scalar M 𝑠 I × M = Scalar R 𝑠 mulGrp I × R
40 27 39 eqtrd R V I W M 𝑠 I = Scalar R 𝑠 mulGrp I × R
41 3 40 eqtrid R V I W Z = Scalar R 𝑠 mulGrp I × R
42 41 fveq2d R V I W Base Z = Base Scalar R 𝑠 mulGrp I × R
43 17 22 42 3eqtr4d R V I W Base N = Base Z
44 43 5 6 3eqtr4g R V I W B = C
45 16 simprd R V I W + mulGrp Scalar R 𝑠 I × R = + Scalar R 𝑠 mulGrp I × R
46 21 fveq2d R V I W + N = + mulGrp Scalar R 𝑠 I × R
47 41 fveq2d R V I W + Z = + Scalar R 𝑠 mulGrp I × R
48 45 46 47 3eqtr4d R V I W + N = + Z
49 48 7 8 3eqtr4g R V I W + ˙ = ˙
50 44 49 jca R V I W B = C + ˙ = ˙