Metamath Proof Explorer


Theorem pwsmnd

Description: The structure power of a monoid is a monoid. (Contributed by Mario Carneiro, 11-Jan-2015)

Ref Expression
Hypothesis pwsmnd.y Y = R 𝑠 I
Assertion pwsmnd R Mnd I V Y Mnd

Proof

Step Hyp Ref Expression
1 pwsmnd.y Y = R 𝑠 I
2 eqid Scalar R = Scalar R
3 1 2 pwsval R Mnd I V Y = Scalar R 𝑠 I × R
4 eqid Scalar R 𝑠 I × R = Scalar R 𝑠 I × R
5 simpr R Mnd I V I V
6 fvexd R Mnd I V Scalar R V
7 fconst6g R Mnd I × R : I Mnd
8 7 adantr R Mnd I V I × R : I Mnd
9 4 5 6 8 prdsmndd R Mnd I V Scalar R 𝑠 I × R Mnd
10 3 9 eqeltrd R Mnd I V Y Mnd