Metamath Proof Explorer


Theorem pwsms

Description: A power of a metric space is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypothesis pwsms.y Y = R 𝑠 I
Assertion pwsms R MetSp I Fin Y MetSp

Proof

Step Hyp Ref Expression
1 pwsms.y Y = R 𝑠 I
2 eqid Scalar R = Scalar R
3 1 2 pwsval R MetSp I Fin Y = Scalar R 𝑠 I × R
4 fvexd R MetSp I Fin Scalar R V
5 simpr R MetSp I Fin I Fin
6 fconst6g R MetSp I × R : I MetSp
7 6 adantr R MetSp I Fin I × R : I MetSp
8 eqid Scalar R 𝑠 I × R = Scalar R 𝑠 I × R
9 8 prdsms Scalar R V I Fin I × R : I MetSp Scalar R 𝑠 I × R MetSp
10 4 5 7 9 syl3anc R MetSp I Fin Scalar R 𝑠 I × R MetSp
11 3 10 eqeltrd R MetSp I Fin Y MetSp