Metamath Proof Explorer


Theorem pwsmulg

Description: Value of a group multiple in a structure power. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypotheses pwsmulg.y Y = R 𝑠 I
pwsmulg.b B = Base Y
pwsmulg.s ˙ = Y
pwsmulg.t · ˙ = R
Assertion pwsmulg R Mnd I V N 0 X B A I N ˙ X A = N · ˙ X A

Proof

Step Hyp Ref Expression
1 pwsmulg.y Y = R 𝑠 I
2 pwsmulg.b B = Base Y
3 pwsmulg.s ˙ = Y
4 pwsmulg.t · ˙ = R
5 simpll R Mnd I V N 0 X B A I R Mnd
6 simplr R Mnd I V N 0 X B A I I V
7 simpr3 R Mnd I V N 0 X B A I A I
8 1 2 pwspjmhm R Mnd I V A I x B x A Y MndHom R
9 5 6 7 8 syl3anc R Mnd I V N 0 X B A I x B x A Y MndHom R
10 simpr1 R Mnd I V N 0 X B A I N 0
11 simpr2 R Mnd I V N 0 X B A I X B
12 2 3 4 mhmmulg x B x A Y MndHom R N 0 X B x B x A N ˙ X = N · ˙ x B x A X
13 9 10 11 12 syl3anc R Mnd I V N 0 X B A I x B x A N ˙ X = N · ˙ x B x A X
14 1 pwsmnd R Mnd I V Y Mnd
15 14 adantr R Mnd I V N 0 X B A I Y Mnd
16 2 3 mulgnn0cl Y Mnd N 0 X B N ˙ X B
17 15 10 11 16 syl3anc R Mnd I V N 0 X B A I N ˙ X B
18 fveq1 x = N ˙ X x A = N ˙ X A
19 eqid x B x A = x B x A
20 fvex N ˙ X A V
21 18 19 20 fvmpt N ˙ X B x B x A N ˙ X = N ˙ X A
22 17 21 syl R Mnd I V N 0 X B A I x B x A N ˙ X = N ˙ X A
23 fveq1 x = X x A = X A
24 fvex X A V
25 23 19 24 fvmpt X B x B x A X = X A
26 11 25 syl R Mnd I V N 0 X B A I x B x A X = X A
27 26 oveq2d R Mnd I V N 0 X B A I N · ˙ x B x A X = N · ˙ X A
28 13 22 27 3eqtr3d R Mnd I V N 0 X B A I N ˙ X A = N · ˙ X A