Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
pwsn
Next ⟩
pwsnOLD
Metamath Proof Explorer
Ascii
Unicode
Theorem
pwsn
Description:
The power set of a singleton.
(Contributed by
NM
, 5-Jun-2006)
Ref
Expression
Assertion
pwsn
⊢
𝒫
A
=
∅
A
Proof
Step
Hyp
Ref
Expression
1
sssn
⊢
x
⊆
A
↔
x
=
∅
∨
x
=
A
2
1
abbii
⊢
x
|
x
⊆
A
=
x
|
x
=
∅
∨
x
=
A
3
df-pw
⊢
𝒫
A
=
x
|
x
⊆
A
4
dfpr2
⊢
∅
A
=
x
|
x
=
∅
∨
x
=
A
5
2
3
4
3eqtr4i
⊢
𝒫
A
=
∅
A