Metamath Proof Explorer


Theorem pwsnOLD

Description: Obsolete version of pwsn as of 14-Apr-2024. Note that the proof is essentially the same once one inlines sssn in the proof of pwsn . (Contributed by NM, 5-Jun-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion pwsnOLD 𝒫 A = A

Proof

Step Hyp Ref Expression
1 dfss2 x A y y x y A
2 velsn y A y = A
3 2 imbi2i y x y A y x y = A
4 3 albii y y x y A y y x y = A
5 1 4 bitri x A y y x y = A
6 neq0 ¬ x = y y x
7 exintr y y x y = A y y x y y x y = A
8 6 7 syl5bi y y x y = A ¬ x = y y x y = A
9 dfclel A x y y = A y x
10 exancom y y = A y x y y x y = A
11 9 10 bitr2i y y x y = A A x
12 snssi A x A x
13 11 12 sylbi y y x y = A A x
14 8 13 syl6 y y x y = A ¬ x = A x
15 5 14 sylbi x A ¬ x = A x
16 15 anc2li x A ¬ x = x A A x
17 eqss x = A x A A x
18 16 17 syl6ibr x A ¬ x = x = A
19 18 orrd x A x = x = A
20 0ss A
21 sseq1 x = x A A
22 20 21 mpbiri x = x A
23 eqimss x = A x A
24 22 23 jaoi x = x = A x A
25 19 24 impbii x A x = x = A
26 25 abbii x | x A = x | x = x = A
27 df-pw 𝒫 A = x | x A
28 dfpr2 A = x | x = x = A
29 26 27 28 3eqtr4i 𝒫 A = A