Metamath Proof Explorer


Theorem pwspjmhm

Description: A projection from a structure power of a monoid to the monoid itself is a monoid homomorphism. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypotheses pwspjmhm.y Y = R 𝑠 I
pwspjmhm.b B = Base Y
Assertion pwspjmhm R Mnd I V A I x B x A Y MndHom R

Proof

Step Hyp Ref Expression
1 pwspjmhm.y Y = R 𝑠 I
2 pwspjmhm.b B = Base Y
3 eqid Scalar R 𝑠 I × R = Scalar R 𝑠 I × R
4 eqid Base Scalar R 𝑠 I × R = Base Scalar R 𝑠 I × R
5 simp2 R Mnd I V A I I V
6 fvexd R Mnd I V A I Scalar R V
7 fconst6g R Mnd I × R : I Mnd
8 7 3ad2ant1 R Mnd I V A I I × R : I Mnd
9 simp3 R Mnd I V A I A I
10 3 4 5 6 8 9 prdspjmhm R Mnd I V A I x Base Scalar R 𝑠 I × R x A Scalar R 𝑠 I × R MndHom I × R A
11 eqid Scalar R = Scalar R
12 1 11 pwsval R Mnd I V Y = Scalar R 𝑠 I × R
13 12 3adant3 R Mnd I V A I Y = Scalar R 𝑠 I × R
14 13 fveq2d R Mnd I V A I Base Y = Base Scalar R 𝑠 I × R
15 2 14 syl5eq R Mnd I V A I B = Base Scalar R 𝑠 I × R
16 15 mpteq1d R Mnd I V A I x B x A = x Base Scalar R 𝑠 I × R x A
17 fvconst2g R Mnd A I I × R A = R
18 17 3adant2 R Mnd I V A I I × R A = R
19 18 eqcomd R Mnd I V A I R = I × R A
20 13 19 oveq12d R Mnd I V A I Y MndHom R = Scalar R 𝑠 I × R MndHom I × R A
21 10 16 20 3eltr4d R Mnd I V A I x B x A Y MndHom R