Metamath Proof Explorer


Theorem pwsring

Description: A structure power of a ring is a ring. (Contributed by Mario Carneiro, 11-Mar-2015)

Ref Expression
Hypothesis pwsring.y Y = R 𝑠 I
Assertion pwsring R Ring I V Y Ring

Proof

Step Hyp Ref Expression
1 pwsring.y Y = R 𝑠 I
2 eqid Scalar R = Scalar R
3 1 2 pwsval R Ring I V Y = Scalar R 𝑠 I × R
4 eqid Scalar R 𝑠 I × R = Scalar R 𝑠 I × R
5 simpr R Ring I V I V
6 fvexd R Ring I V Scalar R V
7 fconst6g R Ring I × R : I Ring
8 7 adantr R Ring I V I × R : I Ring
9 4 5 6 8 prdsringd R Ring I V Scalar R 𝑠 I × R Ring
10 3 9 eqeltrd R Ring I V Y Ring