Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Power classes
pwss
Next ⟩
pwundif
Metamath Proof Explorer
Ascii
Unicode
Theorem
pwss
Description:
Subclass relationship for power class.
(Contributed by
NM
, 21-Jun-2009)
Ref
Expression
Assertion
pwss
⊢
𝒫
A
⊆
B
↔
∀
x
x
⊆
A
→
x
∈
B
Proof
Step
Hyp
Ref
Expression
1
dfss2
⊢
𝒫
A
⊆
B
↔
∀
x
x
∈
𝒫
A
→
x
∈
B
2
velpw
⊢
x
∈
𝒫
A
↔
x
⊆
A
3
2
imbi1i
⊢
x
∈
𝒫
A
→
x
∈
B
↔
x
⊆
A
→
x
∈
B
4
3
albii
⊢
∀
x
x
∈
𝒫
A
→
x
∈
B
↔
∀
x
x
⊆
A
→
x
∈
B
5
1
4
bitri
⊢
𝒫
A
⊆
B
↔
∀
x
x
⊆
A
→
x
∈
B