Database
BASIC STRUCTURES
Extensible structures
Definition of the structure product
pwssca
Next ⟩
pwsdiagel
Metamath Proof Explorer
Ascii
Unicode
Theorem
pwssca
Description:
The ring of scalars of a structure power.
(Contributed by
Stefan O'Rear
, 24-Jan-2015)
Ref
Expression
Hypotheses
pwssca.y
⊢
Y
=
R
↑
𝑠
I
pwssca.s
⊢
S
=
Scalar
⁡
R
Assertion
pwssca
⊢
R
∈
V
∧
I
∈
W
→
S
=
Scalar
⁡
Y
Proof
Step
Hyp
Ref
Expression
1
pwssca.y
⊢
Y
=
R
↑
𝑠
I
2
pwssca.s
⊢
S
=
Scalar
⁡
R
3
eqid
⊢
S
⨉
𝑠
I
×
R
=
S
⨉
𝑠
I
×
R
4
2
fvexi
⊢
S
∈
V
5
4
a1i
⊢
R
∈
V
∧
I
∈
W
→
S
∈
V
6
simpr
⊢
R
∈
V
∧
I
∈
W
→
I
∈
W
7
snex
⊢
R
∈
V
8
xpexg
⊢
I
∈
W
∧
R
∈
V
→
I
×
R
∈
V
9
6
7
8
sylancl
⊢
R
∈
V
∧
I
∈
W
→
I
×
R
∈
V
10
3
5
9
prdssca
⊢
R
∈
V
∧
I
∈
W
→
S
=
Scalar
⁡
S
⨉
𝑠
I
×
R
11
1
2
pwsval
⊢
R
∈
V
∧
I
∈
W
→
Y
=
S
⨉
𝑠
I
×
R
12
11
fveq2d
⊢
R
∈
V
∧
I
∈
W
→
Scalar
⁡
Y
=
Scalar
⁡
S
⨉
𝑠
I
×
R
13
10
12
eqtr4d
⊢
R
∈
V
∧
I
∈
W
→
S
=
Scalar
⁡
Y