Metamath Proof Explorer


Theorem pwssca

Description: The ring of scalars of a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses pwssca.y Y = R 𝑠 I
pwssca.s S = Scalar R
Assertion pwssca R V I W S = Scalar Y

Proof

Step Hyp Ref Expression
1 pwssca.y Y = R 𝑠 I
2 pwssca.s S = Scalar R
3 eqid S 𝑠 I × R = S 𝑠 I × R
4 2 fvexi S V
5 4 a1i R V I W S V
6 simpr R V I W I W
7 snex R V
8 xpexg I W R V I × R V
9 6 7 8 sylancl R V I W I × R V
10 3 5 9 prdssca R V I W S = Scalar S 𝑠 I × R
11 1 2 pwsval R V I W Y = S 𝑠 I × R
12 11 fveq2d R V I W Scalar Y = Scalar S 𝑠 I × R
13 10 12 eqtr4d R V I W S = Scalar Y