Metamath Proof Explorer


Theorem pwssplit0

Description: Splitting for structure powers, part 0: restriction is a function. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses pwssplit1.y Y = W 𝑠 U
pwssplit1.z Z = W 𝑠 V
pwssplit1.b B = Base Y
pwssplit1.c C = Base Z
pwssplit1.f F = x B x V
Assertion pwssplit0 W T U X V U F : B C

Proof

Step Hyp Ref Expression
1 pwssplit1.y Y = W 𝑠 U
2 pwssplit1.z Z = W 𝑠 V
3 pwssplit1.b B = Base Y
4 pwssplit1.c C = Base Z
5 pwssplit1.f F = x B x V
6 eqid Base W = Base W
7 1 6 3 pwselbasb W T U X x B x : U Base W
8 7 3adant3 W T U X V U x B x : U Base W
9 8 biimpa W T U X V U x B x : U Base W
10 simpl3 W T U X V U x B V U
11 9 10 fssresd W T U X V U x B x V : V Base W
12 simp1 W T U X V U W T
13 simp2 W T U X V U U X
14 simp3 W T U X V U V U
15 13 14 ssexd W T U X V U V V
16 2 6 4 pwselbasb W T V V x V C x V : V Base W
17 12 15 16 syl2anc W T U X V U x V C x V : V Base W
18 17 adantr W T U X V U x B x V C x V : V Base W
19 11 18 mpbird W T U X V U x B x V C
20 19 5 fmptd W T U X V U F : B C