| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwssplit1.y |
|
| 2 |
|
pwssplit1.z |
|
| 3 |
|
pwssplit1.b |
|
| 4 |
|
pwssplit1.c |
|
| 5 |
|
pwssplit1.f |
|
| 6 |
1 2 3 4 5
|
pwssplit0 |
|
| 7 |
|
simp1 |
|
| 8 |
|
simp2 |
|
| 9 |
|
simp3 |
|
| 10 |
8 9
|
ssexd |
|
| 11 |
|
eqid |
|
| 12 |
2 11 4
|
pwselbasb |
|
| 13 |
7 10 12
|
syl2anc |
|
| 14 |
13
|
biimpa |
|
| 15 |
|
fvex |
|
| 16 |
15
|
fconst |
|
| 17 |
16
|
a1i |
|
| 18 |
|
simpl1 |
|
| 19 |
|
eqid |
|
| 20 |
11 19
|
mndidcl |
|
| 21 |
18 20
|
syl |
|
| 22 |
21
|
snssd |
|
| 23 |
17 22
|
fssd |
|
| 24 |
|
disjdif |
|
| 25 |
24
|
a1i |
|
| 26 |
|
fun |
|
| 27 |
14 23 25 26
|
syl21anc |
|
| 28 |
|
simpl3 |
|
| 29 |
|
undif |
|
| 30 |
28 29
|
sylib |
|
| 31 |
|
unidm |
|
| 32 |
31
|
a1i |
|
| 33 |
30 32
|
feq23d |
|
| 34 |
27 33
|
mpbid |
|
| 35 |
|
simpl2 |
|
| 36 |
1 11 3
|
pwselbasb |
|
| 37 |
18 35 36
|
syl2anc |
|
| 38 |
34 37
|
mpbird |
|
| 39 |
5
|
fvtresfn |
|
| 40 |
38 39
|
syl |
|
| 41 |
|
resundir |
|
| 42 |
|
ffn |
|
| 43 |
|
fnresdm |
|
| 44 |
14 42 43
|
3syl |
|
| 45 |
|
disjdifr |
|
| 46 |
|
fnconstg |
|
| 47 |
15 46
|
ax-mp |
|
| 48 |
|
fnresdisj |
|
| 49 |
47 48
|
mp1i |
|
| 50 |
45 49
|
mpbii |
|
| 51 |
44 50
|
uneq12d |
|
| 52 |
41 51
|
eqtrid |
|
| 53 |
|
un0 |
|
| 54 |
52 53
|
eqtrdi |
|
| 55 |
40 54
|
eqtr2d |
|
| 56 |
|
fveq2 |
|
| 57 |
56
|
rspceeqv |
|
| 58 |
38 55 57
|
syl2anc |
|
| 59 |
58
|
ralrimiva |
|
| 60 |
|
dffo3 |
|
| 61 |
6 59 60
|
sylanbrc |
|