Metamath Proof Explorer


Theorem pwssplit1

Description: Splitting for structure powers, part 1: restriction is an onto function. The only actual monoid law we need here is that the base set is nonempty. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses pwssplit1.y Y = W 𝑠 U
pwssplit1.z Z = W 𝑠 V
pwssplit1.b B = Base Y
pwssplit1.c C = Base Z
pwssplit1.f F = x B x V
Assertion pwssplit1 W Mnd U X V U F : B onto C

Proof

Step Hyp Ref Expression
1 pwssplit1.y Y = W 𝑠 U
2 pwssplit1.z Z = W 𝑠 V
3 pwssplit1.b B = Base Y
4 pwssplit1.c C = Base Z
5 pwssplit1.f F = x B x V
6 1 2 3 4 5 pwssplit0 W Mnd U X V U F : B C
7 simp1 W Mnd U X V U W Mnd
8 simp2 W Mnd U X V U U X
9 simp3 W Mnd U X V U V U
10 8 9 ssexd W Mnd U X V U V V
11 eqid Base W = Base W
12 2 11 4 pwselbasb W Mnd V V a C a : V Base W
13 7 10 12 syl2anc W Mnd U X V U a C a : V Base W
14 13 biimpa W Mnd U X V U a C a : V Base W
15 fvex 0 W V
16 15 fconst U V × 0 W : U V 0 W
17 16 a1i W Mnd U X V U a C U V × 0 W : U V 0 W
18 simpl1 W Mnd U X V U a C W Mnd
19 eqid 0 W = 0 W
20 11 19 mndidcl W Mnd 0 W Base W
21 18 20 syl W Mnd U X V U a C 0 W Base W
22 21 snssd W Mnd U X V U a C 0 W Base W
23 17 22 fssd W Mnd U X V U a C U V × 0 W : U V Base W
24 disjdif V U V =
25 24 a1i W Mnd U X V U a C V U V =
26 fun a : V Base W U V × 0 W : U V Base W V U V = a U V × 0 W : V U V Base W Base W
27 14 23 25 26 syl21anc W Mnd U X V U a C a U V × 0 W : V U V Base W Base W
28 simpl3 W Mnd U X V U a C V U
29 undif V U V U V = U
30 28 29 sylib W Mnd U X V U a C V U V = U
31 unidm Base W Base W = Base W
32 31 a1i W Mnd U X V U a C Base W Base W = Base W
33 30 32 feq23d W Mnd U X V U a C a U V × 0 W : V U V Base W Base W a U V × 0 W : U Base W
34 27 33 mpbid W Mnd U X V U a C a U V × 0 W : U Base W
35 simpl2 W Mnd U X V U a C U X
36 1 11 3 pwselbasb W Mnd U X a U V × 0 W B a U V × 0 W : U Base W
37 18 35 36 syl2anc W Mnd U X V U a C a U V × 0 W B a U V × 0 W : U Base W
38 34 37 mpbird W Mnd U X V U a C a U V × 0 W B
39 5 fvtresfn a U V × 0 W B F a U V × 0 W = a U V × 0 W V
40 38 39 syl W Mnd U X V U a C F a U V × 0 W = a U V × 0 W V
41 resundir a U V × 0 W V = a V U V × 0 W V
42 ffn a : V Base W a Fn V
43 fnresdm a Fn V a V = a
44 14 42 43 3syl W Mnd U X V U a C a V = a
45 incom U V V = V U V
46 45 24 eqtri U V V =
47 fnconstg 0 W V U V × 0 W Fn U V
48 15 47 ax-mp U V × 0 W Fn U V
49 fnresdisj U V × 0 W Fn U V U V V = U V × 0 W V =
50 48 49 mp1i W Mnd U X V U a C U V V = U V × 0 W V =
51 46 50 mpbii W Mnd U X V U a C U V × 0 W V =
52 44 51 uneq12d W Mnd U X V U a C a V U V × 0 W V = a
53 41 52 syl5eq W Mnd U X V U a C a U V × 0 W V = a
54 un0 a = a
55 53 54 syl6eq W Mnd U X V U a C a U V × 0 W V = a
56 40 55 eqtr2d W Mnd U X V U a C a = F a U V × 0 W
57 fveq2 b = a U V × 0 W F b = F a U V × 0 W
58 57 rspceeqv a U V × 0 W B a = F a U V × 0 W b B a = F b
59 38 56 58 syl2anc W Mnd U X V U a C b B a = F b
60 59 ralrimiva W Mnd U X V U a C b B a = F b
61 dffo3 F : B onto C F : B C a C b B a = F b
62 6 60 61 sylanbrc W Mnd U X V U F : B onto C