Metamath Proof Explorer


Theorem pwssplit2

Description: Splitting for structure powers, part 2: restriction is a group homomorphism. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses pwssplit1.y Y = W 𝑠 U
pwssplit1.z Z = W 𝑠 V
pwssplit1.b B = Base Y
pwssplit1.c C = Base Z
pwssplit1.f F = x B x V
Assertion pwssplit2 W Grp U X V U F Y GrpHom Z

Proof

Step Hyp Ref Expression
1 pwssplit1.y Y = W 𝑠 U
2 pwssplit1.z Z = W 𝑠 V
3 pwssplit1.b B = Base Y
4 pwssplit1.c C = Base Z
5 pwssplit1.f F = x B x V
6 eqid + Y = + Y
7 eqid + Z = + Z
8 simp1 W Grp U X V U W Grp
9 simp2 W Grp U X V U U X
10 1 pwsgrp W Grp U X Y Grp
11 8 9 10 syl2anc W Grp U X V U Y Grp
12 simp3 W Grp U X V U V U
13 9 12 ssexd W Grp U X V U V V
14 2 pwsgrp W Grp V V Z Grp
15 8 13 14 syl2anc W Grp U X V U Z Grp
16 1 2 3 4 5 pwssplit0 W Grp U X V U F : B C
17 offres a B b B a + W f b V = a V + W f b V
18 17 adantl W Grp U X V U a B b B a + W f b V = a V + W f b V
19 8 adantr W Grp U X V U a B b B W Grp
20 simpl2 W Grp U X V U a B b B U X
21 simprl W Grp U X V U a B b B a B
22 simprr W Grp U X V U a B b B b B
23 eqid + W = + W
24 1 3 19 20 21 22 23 6 pwsplusgval W Grp U X V U a B b B a + Y b = a + W f b
25 24 reseq1d W Grp U X V U a B b B a + Y b V = a + W f b V
26 5 fvtresfn a B F a = a V
27 5 fvtresfn b B F b = b V
28 26 27 oveqan12d a B b B F a + W f F b = a V + W f b V
29 28 adantl W Grp U X V U a B b B F a + W f F b = a V + W f b V
30 18 25 29 3eqtr4d W Grp U X V U a B b B a + Y b V = F a + W f F b
31 3 6 grpcl Y Grp a B b B a + Y b B
32 31 3expb Y Grp a B b B a + Y b B
33 11 32 sylan W Grp U X V U a B b B a + Y b B
34 5 fvtresfn a + Y b B F a + Y b = a + Y b V
35 33 34 syl W Grp U X V U a B b B F a + Y b = a + Y b V
36 13 adantr W Grp U X V U a B b B V V
37 16 ffvelrnda W Grp U X V U a B F a C
38 37 adantrr W Grp U X V U a B b B F a C
39 16 ffvelrnda W Grp U X V U b B F b C
40 39 adantrl W Grp U X V U a B b B F b C
41 2 4 19 36 38 40 23 7 pwsplusgval W Grp U X V U a B b B F a + Z F b = F a + W f F b
42 30 35 41 3eqtr4d W Grp U X V U a B b B F a + Y b = F a + Z F b
43 3 4 6 7 11 15 16 42 isghmd W Grp U X V U F Y GrpHom Z