Step |
Hyp |
Ref |
Expression |
1 |
|
pwssplit1.y |
|
2 |
|
pwssplit1.z |
|
3 |
|
pwssplit1.b |
|
4 |
|
pwssplit1.c |
|
5 |
|
pwssplit1.f |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
|
simp1 |
|
9 |
|
simp2 |
|
10 |
1
|
pwsgrp |
|
11 |
8 9 10
|
syl2anc |
|
12 |
|
simp3 |
|
13 |
9 12
|
ssexd |
|
14 |
2
|
pwsgrp |
|
15 |
8 13 14
|
syl2anc |
|
16 |
1 2 3 4 5
|
pwssplit0 |
|
17 |
|
offres |
|
18 |
17
|
adantl |
|
19 |
8
|
adantr |
|
20 |
|
simpl2 |
|
21 |
|
simprl |
|
22 |
|
simprr |
|
23 |
|
eqid |
|
24 |
1 3 19 20 21 22 23 6
|
pwsplusgval |
|
25 |
24
|
reseq1d |
|
26 |
5
|
fvtresfn |
|
27 |
5
|
fvtresfn |
|
28 |
26 27
|
oveqan12d |
|
29 |
28
|
adantl |
|
30 |
18 25 29
|
3eqtr4d |
|
31 |
3 6
|
grpcl |
|
32 |
31
|
3expb |
|
33 |
11 32
|
sylan |
|
34 |
5
|
fvtresfn |
|
35 |
33 34
|
syl |
|
36 |
13
|
adantr |
|
37 |
16
|
ffvelrnda |
|
38 |
37
|
adantrr |
|
39 |
16
|
ffvelrnda |
|
40 |
39
|
adantrl |
|
41 |
2 4 19 36 38 40 23 7
|
pwsplusgval |
|
42 |
30 35 41
|
3eqtr4d |
|
43 |
3 4 6 7 11 15 16 42
|
isghmd |
|