Metamath Proof Explorer


Theorem pwssplit3

Description: Splitting for structure powers, part 3: restriction is a module homomorphism. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses pwssplit1.y Y = W 𝑠 U
pwssplit1.z Z = W 𝑠 V
pwssplit1.b B = Base Y
pwssplit1.c C = Base Z
pwssplit1.f F = x B x V
Assertion pwssplit3 W LMod U X V U F Y LMHom Z

Proof

Step Hyp Ref Expression
1 pwssplit1.y Y = W 𝑠 U
2 pwssplit1.z Z = W 𝑠 V
3 pwssplit1.b B = Base Y
4 pwssplit1.c C = Base Z
5 pwssplit1.f F = x B x V
6 eqid Y = Y
7 eqid Z = Z
8 eqid Scalar Y = Scalar Y
9 eqid Scalar Z = Scalar Z
10 eqid Base Scalar Y = Base Scalar Y
11 simp1 W LMod U X V U W LMod
12 simp2 W LMod U X V U U X
13 1 pwslmod W LMod U X Y LMod
14 11 12 13 syl2anc W LMod U X V U Y LMod
15 simp3 W LMod U X V U V U
16 12 15 ssexd W LMod U X V U V V
17 2 pwslmod W LMod V V Z LMod
18 11 16 17 syl2anc W LMod U X V U Z LMod
19 eqid Scalar W = Scalar W
20 2 19 pwssca W LMod V V Scalar W = Scalar Z
21 11 16 20 syl2anc W LMod U X V U Scalar W = Scalar Z
22 1 19 pwssca W LMod U X Scalar W = Scalar Y
23 11 12 22 syl2anc W LMod U X V U Scalar W = Scalar Y
24 21 23 eqtr3d W LMod U X V U Scalar Z = Scalar Y
25 lmodgrp W LMod W Grp
26 1 2 3 4 5 pwssplit2 W Grp U X V U F Y GrpHom Z
27 25 26 syl3an1 W LMod U X V U F Y GrpHom Z
28 snex a V
29 xpexg U X a V U × a V
30 12 28 29 sylancl W LMod U X V U U × a V
31 vex b V
32 offres U × a V b V U × a W f b V = U × a V W f b V
33 30 31 32 sylancl W LMod U X V U U × a W f b V = U × a V W f b V
34 33 adantr W LMod U X V U a Base Scalar Y b B U × a W f b V = U × a V W f b V
35 xpssres V U U × a V = V × a
36 35 3ad2ant3 W LMod U X V U U × a V = V × a
37 36 adantr W LMod U X V U a Base Scalar Y b B U × a V = V × a
38 37 oveq1d W LMod U X V U a Base Scalar Y b B U × a V W f b V = V × a W f b V
39 34 38 eqtrd W LMod U X V U a Base Scalar Y b B U × a W f b V = V × a W f b V
40 eqid W = W
41 eqid Base Scalar W = Base Scalar W
42 simpl1 W LMod U X V U a Base Scalar Y b B W LMod
43 simpl2 W LMod U X V U a Base Scalar Y b B U X
44 23 fveq2d W LMod U X V U Base Scalar W = Base Scalar Y
45 44 eleq2d W LMod U X V U a Base Scalar W a Base Scalar Y
46 45 biimpar W LMod U X V U a Base Scalar Y a Base Scalar W
47 46 adantrr W LMod U X V U a Base Scalar Y b B a Base Scalar W
48 simprr W LMod U X V U a Base Scalar Y b B b B
49 1 3 40 6 19 41 42 43 47 48 pwsvscafval W LMod U X V U a Base Scalar Y b B a Y b = U × a W f b
50 49 reseq1d W LMod U X V U a Base Scalar Y b B a Y b V = U × a W f b V
51 5 fvtresfn b B F b = b V
52 51 ad2antll W LMod U X V U a Base Scalar Y b B F b = b V
53 52 oveq2d W LMod U X V U a Base Scalar Y b B V × a W f F b = V × a W f b V
54 39 50 53 3eqtr4d W LMod U X V U a Base Scalar Y b B a Y b V = V × a W f F b
55 3 8 6 10 lmodvscl Y LMod a Base Scalar Y b B a Y b B
56 55 3expb Y LMod a Base Scalar Y b B a Y b B
57 14 56 sylan W LMod U X V U a Base Scalar Y b B a Y b B
58 5 fvtresfn a Y b B F a Y b = a Y b V
59 57 58 syl W LMod U X V U a Base Scalar Y b B F a Y b = a Y b V
60 16 adantr W LMod U X V U a Base Scalar Y b B V V
61 1 2 3 4 5 pwssplit0 W LMod U X V U F : B C
62 61 ffvelrnda W LMod U X V U b B F b C
63 62 adantrl W LMod U X V U a Base Scalar Y b B F b C
64 2 4 40 7 19 41 42 60 47 63 pwsvscafval W LMod U X V U a Base Scalar Y b B a Z F b = V × a W f F b
65 54 59 64 3eqtr4d W LMod U X V U a Base Scalar Y b B F a Y b = a Z F b
66 3 6 7 8 9 10 14 18 24 27 65 islmhmd W LMod U X V U F Y LMHom Z