Step |
Hyp |
Ref |
Expression |
1 |
|
pwssplit1.y |
|
2 |
|
pwssplit1.z |
|
3 |
|
pwssplit1.b |
|
4 |
|
pwssplit1.c |
|
5 |
|
pwssplit1.f |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
|
simp1 |
|
12 |
|
simp2 |
|
13 |
1
|
pwslmod |
|
14 |
11 12 13
|
syl2anc |
|
15 |
|
simp3 |
|
16 |
12 15
|
ssexd |
|
17 |
2
|
pwslmod |
|
18 |
11 16 17
|
syl2anc |
|
19 |
|
eqid |
|
20 |
2 19
|
pwssca |
|
21 |
11 16 20
|
syl2anc |
|
22 |
1 19
|
pwssca |
|
23 |
11 12 22
|
syl2anc |
|
24 |
21 23
|
eqtr3d |
|
25 |
|
lmodgrp |
|
26 |
1 2 3 4 5
|
pwssplit2 |
|
27 |
25 26
|
syl3an1 |
|
28 |
|
snex |
|
29 |
|
xpexg |
|
30 |
12 28 29
|
sylancl |
|
31 |
|
vex |
|
32 |
|
offres |
|
33 |
30 31 32
|
sylancl |
|
34 |
33
|
adantr |
|
35 |
|
xpssres |
|
36 |
35
|
3ad2ant3 |
|
37 |
36
|
adantr |
|
38 |
37
|
oveq1d |
|
39 |
34 38
|
eqtrd |
|
40 |
|
eqid |
|
41 |
|
eqid |
|
42 |
|
simpl1 |
|
43 |
|
simpl2 |
|
44 |
23
|
fveq2d |
|
45 |
44
|
eleq2d |
|
46 |
45
|
biimpar |
|
47 |
46
|
adantrr |
|
48 |
|
simprr |
|
49 |
1 3 40 6 19 41 42 43 47 48
|
pwsvscafval |
|
50 |
49
|
reseq1d |
|
51 |
5
|
fvtresfn |
|
52 |
51
|
ad2antll |
|
53 |
52
|
oveq2d |
|
54 |
39 50 53
|
3eqtr4d |
|
55 |
3 8 6 10
|
lmodvscl |
|
56 |
55
|
3expb |
|
57 |
14 56
|
sylan |
|
58 |
5
|
fvtresfn |
|
59 |
57 58
|
syl |
|
60 |
16
|
adantr |
|
61 |
1 2 3 4 5
|
pwssplit0 |
|
62 |
61
|
ffvelrnda |
|
63 |
62
|
adantrl |
|
64 |
2 4 40 7 19 41 42 60 47 63
|
pwsvscafval |
|
65 |
54 59 64
|
3eqtr4d |
|
66 |
3 6 7 8 9 10 14 18 24 27 65
|
islmhmd |
|