| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwssplit1.y |
|
| 2 |
|
pwssplit1.z |
|
| 3 |
|
pwssplit1.b |
|
| 4 |
|
pwssplit1.c |
|
| 5 |
|
pwssplit1.f |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
|
simp1 |
|
| 12 |
|
simp2 |
|
| 13 |
1
|
pwslmod |
|
| 14 |
11 12 13
|
syl2anc |
|
| 15 |
|
simp3 |
|
| 16 |
12 15
|
ssexd |
|
| 17 |
2
|
pwslmod |
|
| 18 |
11 16 17
|
syl2anc |
|
| 19 |
|
eqid |
|
| 20 |
2 19
|
pwssca |
|
| 21 |
11 16 20
|
syl2anc |
|
| 22 |
1 19
|
pwssca |
|
| 23 |
11 12 22
|
syl2anc |
|
| 24 |
21 23
|
eqtr3d |
|
| 25 |
|
lmodgrp |
|
| 26 |
1 2 3 4 5
|
pwssplit2 |
|
| 27 |
25 26
|
syl3an1 |
|
| 28 |
|
snex |
|
| 29 |
|
xpexg |
|
| 30 |
12 28 29
|
sylancl |
|
| 31 |
|
vex |
|
| 32 |
|
offres |
|
| 33 |
30 31 32
|
sylancl |
|
| 34 |
33
|
adantr |
|
| 35 |
|
xpssres |
|
| 36 |
35
|
3ad2ant3 |
|
| 37 |
36
|
adantr |
|
| 38 |
37
|
oveq1d |
|
| 39 |
34 38
|
eqtrd |
|
| 40 |
|
eqid |
|
| 41 |
|
eqid |
|
| 42 |
|
simpl1 |
|
| 43 |
|
simpl2 |
|
| 44 |
23
|
fveq2d |
|
| 45 |
44
|
eleq2d |
|
| 46 |
45
|
biimpar |
|
| 47 |
46
|
adantrr |
|
| 48 |
|
simprr |
|
| 49 |
1 3 40 6 19 41 42 43 47 48
|
pwsvscafval |
|
| 50 |
49
|
reseq1d |
|
| 51 |
5
|
fvtresfn |
|
| 52 |
51
|
ad2antll |
|
| 53 |
52
|
oveq2d |
|
| 54 |
39 50 53
|
3eqtr4d |
|
| 55 |
3 8 6 10
|
lmodvscl |
|
| 56 |
55
|
3expb |
|
| 57 |
14 56
|
sylan |
|
| 58 |
5
|
fvtresfn |
|
| 59 |
57 58
|
syl |
|
| 60 |
16
|
adantr |
|
| 61 |
1 2 3 4 5
|
pwssplit0 |
|
| 62 |
61
|
ffvelcdmda |
|
| 63 |
62
|
adantrl |
|
| 64 |
2 4 40 7 19 41 42 60 47 63
|
pwsvscafval |
|
| 65 |
54 59 64
|
3eqtr4d |
|
| 66 |
3 6 7 8 9 10 14 18 24 27 65
|
islmhmd |
|