Metamath Proof Explorer


Theorem pwssplit4

Description: Splitting for structure powers 4: maps isomorphically onto the other half. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Hypotheses pwssplit4.e E=R𝑠AB
pwssplit4.g G=BaseE
pwssplit4.z 0˙=0R
pwssplit4.k K=yG|yA=A×0˙
pwssplit4.f F=xKxB
pwssplit4.c C=R𝑠A
pwssplit4.d D=R𝑠B
pwssplit4.l L=E𝑠K
Assertion pwssplit4 RLModABVAB=FLLMIsoD

Proof

Step Hyp Ref Expression
1 pwssplit4.e E=R𝑠AB
2 pwssplit4.g G=BaseE
3 pwssplit4.z 0˙=0R
4 pwssplit4.k K=yG|yA=A×0˙
5 pwssplit4.f F=xKxB
6 pwssplit4.c C=R𝑠A
7 pwssplit4.d D=R𝑠B
8 pwssplit4.l L=E𝑠K
9 ssrab2 yG|yA=A×0˙G
10 4 9 eqsstri KG
11 resmpt KGxGxBK=xKxB
12 10 11 ax-mp xGxBK=xKxB
13 5 12 eqtr4i F=xGxBK
14 ssun2 BAB
15 14 a1i RLModABVAB=BAB
16 eqid BaseD=BaseD
17 eqid xGxB=xGxB
18 1 7 2 16 17 pwssplit3 RLModABVBABxGxBELMHomD
19 15 18 syld3an3 RLModABVAB=xGxBELMHomD
20 simp1 RLModABVAB=RLMod
21 lmodgrp RLModRGrp
22 grpmnd RGrpRMnd
23 20 21 22 3syl RLModABVAB=RMnd
24 ssun1 AAB
25 ssexg AABABVAV
26 24 25 mpan ABVAV
27 26 3ad2ant2 RLModABVAB=AV
28 6 3 pws0g RMndAVA×0˙=0C
29 23 27 28 syl2anc RLModABVAB=A×0˙=0C
30 29 eqeq2d RLModABVAB=yA=A×0˙yA=0C
31 30 rabbidv RLModABVAB=yG|yA=A×0˙=yG|yA=0C
32 4 31 eqtrid RLModABVAB=K=yG|yA=0C
33 24 a1i RLModABVAB=AAB
34 eqid BaseC=BaseC
35 eqid yGyA=yGyA
36 1 6 2 34 35 pwssplit3 RLModABVAAByGyAELMHomC
37 33 36 syld3an3 RLModABVAB=yGyAELMHomC
38 fvex 0CV
39 35 mptiniseg 0CVyGyA-10C=yG|yA=0C
40 38 39 ax-mp yGyA-10C=yG|yA=0C
41 40 eqcomi yG|yA=0C=yGyA-10C
42 eqid 0C=0C
43 eqid LSubSpE=LSubSpE
44 41 42 43 lmhmkerlss yGyAELMHomCyG|yA=0CLSubSpE
45 37 44 syl RLModABVAB=yG|yA=0CLSubSpE
46 32 45 eqeltrd RLModABVAB=KLSubSpE
47 43 8 reslmhm xGxBELMHomDKLSubSpExGxBKLLMHomD
48 19 46 47 syl2anc RLModABVAB=xGxBKLLMHomD
49 13 48 eqeltrid RLModABVAB=FLLMHomD
50 5 fvtresfn aKFa=aB
51 ssexg BABABVBV
52 14 51 mpan ABVBV
53 52 3ad2ant2 RLModABVAB=BV
54 7 3 pws0g RMndBVB×0˙=0D
55 23 53 54 syl2anc RLModABVAB=B×0˙=0D
56 55 eqcomd RLModABVAB=0D=B×0˙
57 50 56 eqeqan12rd RLModABVAB=aKFa=0DaB=B×0˙
58 reseq1 y=ayA=aA
59 58 eqeq1d y=ayA=A×0˙aA=A×0˙
60 59 4 elrab2 aKaGaA=A×0˙
61 uneq12 aA=A×0˙aB=B×0˙aAaB=A×0˙B×0˙
62 resundi aAB=aAaB
63 xpundir AB×0˙=A×0˙B×0˙
64 61 62 63 3eqtr4g aA=A×0˙aB=B×0˙aAB=AB×0˙
65 64 adantll aGaA=A×0˙aB=B×0˙aAB=AB×0˙
66 65 adantl RLModABVAB=aGaA=A×0˙aB=B×0˙aAB=AB×0˙
67 eqid BaseR=BaseR
68 simpl1 RLModABVAB=aGaA=A×0˙aB=B×0˙RLMod
69 simp2 RLModABVAB=ABV
70 69 adantr RLModABVAB=aGaA=A×0˙aB=B×0˙ABV
71 simprll RLModABVAB=aGaA=A×0˙aB=B×0˙aG
72 1 67 2 68 70 71 pwselbas RLModABVAB=aGaA=A×0˙aB=B×0˙a:ABBaseR
73 ffn a:ABBaseRaFnAB
74 fnresdm aFnABaAB=a
75 72 73 74 3syl RLModABVAB=aGaA=A×0˙aB=B×0˙aAB=a
76 1 3 pws0g RMndABVAB×0˙=0E
77 23 69 76 syl2anc RLModABVAB=AB×0˙=0E
78 1 pwslmod RLModABVELMod
79 78 3adant3 RLModABVAB=ELMod
80 43 lsssubg ELModKLSubSpEKSubGrpE
81 79 46 80 syl2anc RLModABVAB=KSubGrpE
82 eqid 0E=0E
83 8 82 subg0 KSubGrpE0E=0L
84 81 83 syl RLModABVAB=0E=0L
85 77 84 eqtrd RLModABVAB=AB×0˙=0L
86 85 adantr RLModABVAB=aGaA=A×0˙aB=B×0˙AB×0˙=0L
87 66 75 86 3eqtr3d RLModABVAB=aGaA=A×0˙aB=B×0˙a=0L
88 87 exp32 RLModABVAB=aGaA=A×0˙aB=B×0˙a=0L
89 60 88 biimtrid RLModABVAB=aKaB=B×0˙a=0L
90 89 imp RLModABVAB=aKaB=B×0˙a=0L
91 57 90 sylbid RLModABVAB=aKFa=0Da=0L
92 91 ralrimiva RLModABVAB=aKFa=0Da=0L
93 lmghm FLLMHomDFLGrpHomD
94 8 2 ressbas2 KGK=BaseL
95 10 94 ax-mp K=BaseL
96 eqid 0L=0L
97 eqid 0D=0D
98 95 16 96 97 ghmf1 FLGrpHomDF:K1-1BaseDaKFa=0Da=0L
99 49 93 98 3syl RLModABVAB=F:K1-1BaseDaKFa=0Da=0L
100 92 99 mpbird RLModABVAB=F:K1-1BaseD
101 eqid BaseL=BaseL
102 101 16 lmhmf FLLMHomDF:BaseLBaseD
103 frn F:BaseLBaseDranFBaseD
104 49 102 103 3syl RLModABVAB=ranFBaseD
105 reseq1 x=aA×0˙xB=aA×0˙B
106 7 67 16 pwselbasb RLModBVaBaseDa:BBaseR
107 20 53 106 syl2anc RLModABVAB=aBaseDa:BBaseR
108 107 biimpa RLModABVAB=aBaseDa:BBaseR
109 3 fvexi 0˙V
110 109 fconst A×0˙:A0˙
111 110 a1i RLModABVAB=aBaseDA×0˙:A0˙
112 23 adantr RLModABVAB=aBaseDRMnd
113 67 3 mndidcl RMnd0˙BaseR
114 112 113 syl RLModABVAB=aBaseD0˙BaseR
115 114 snssd RLModABVAB=aBaseD0˙BaseR
116 111 115 fssd RLModABVAB=aBaseDA×0˙:ABaseR
117 incom BA=AB
118 simp3 RLModABVAB=AB=
119 117 118 eqtrid RLModABVAB=BA=
120 119 adantr RLModABVAB=aBaseDBA=
121 fun a:BBaseRA×0˙:ABaseRBA=aA×0˙:BABaseRBaseR
122 108 116 120 121 syl21anc RLModABVAB=aBaseDaA×0˙:BABaseRBaseR
123 uncom BA=AB
124 unidm BaseRBaseR=BaseR
125 123 124 feq23i aA×0˙:BABaseRBaseRaA×0˙:ABBaseR
126 122 125 sylib RLModABVAB=aBaseDaA×0˙:ABBaseR
127 1 67 2 pwselbasb RLModABVaA×0˙GaA×0˙:ABBaseR
128 127 3adant3 RLModABVAB=aA×0˙GaA×0˙:ABBaseR
129 128 adantr RLModABVAB=aBaseDaA×0˙GaA×0˙:ABBaseR
130 126 129 mpbird RLModABVAB=aBaseDaA×0˙G
131 simpl3 RLModABVAB=aBaseDAB=
132 117 131 eqtrid RLModABVAB=aBaseDBA=
133 ffn a:BBaseRaFnB
134 fnresdisj aFnBBA=aA=
135 108 133 134 3syl RLModABVAB=aBaseDBA=aA=
136 132 135 mpbid RLModABVAB=aBaseDaA=
137 fnconstg 0˙VA×0˙FnA
138 fnresdm A×0˙FnAA×0˙A=A×0˙
139 109 137 138 mp2b A×0˙A=A×0˙
140 139 a1i RLModABVAB=aBaseDA×0˙A=A×0˙
141 136 140 uneq12d RLModABVAB=aBaseDaAA×0˙A=A×0˙
142 resundir aA×0˙A=aAA×0˙A
143 uncom A×0˙=A×0˙
144 un0 A×0˙=A×0˙
145 143 144 eqtr2i A×0˙=A×0˙
146 141 142 145 3eqtr4g RLModABVAB=aBaseDaA×0˙A=A×0˙
147 reseq1 y=aA×0˙yA=aA×0˙A
148 147 eqeq1d y=aA×0˙yA=A×0˙aA×0˙A=A×0˙
149 148 4 elrab2 aA×0˙KaA×0˙GaA×0˙A=A×0˙
150 130 146 149 sylanbrc RLModABVAB=aBaseDaA×0˙K
151 130 resexd RLModABVAB=aBaseDaA×0˙BV
152 5 105 150 151 fvmptd3 RLModABVAB=aBaseDFaA×0˙=aA×0˙B
153 resundir aA×0˙B=aBA×0˙B
154 fnresdm aFnBaB=a
155 108 133 154 3syl RLModABVAB=aBaseDaB=a
156 ffn A×0˙:A0˙A×0˙FnA
157 fnresdisj A×0˙FnAAB=A×0˙B=
158 110 156 157 mp2b AB=A×0˙B=
159 158 biimpi AB=A×0˙B=
160 159 3ad2ant3 RLModABVAB=A×0˙B=
161 160 adantr RLModABVAB=aBaseDA×0˙B=
162 155 161 uneq12d RLModABVAB=aBaseDaBA×0˙B=a
163 un0 a=a
164 162 163 eqtrdi RLModABVAB=aBaseDaBA×0˙B=a
165 153 164 eqtrid RLModABVAB=aBaseDaA×0˙B=a
166 152 165 eqtrd RLModABVAB=aBaseDFaA×0˙=a
167 95 16 lmhmf FLLMHomDF:KBaseD
168 ffn F:KBaseDFFnK
169 49 167 168 3syl RLModABVAB=FFnK
170 169 adantr RLModABVAB=aBaseDFFnK
171 fnfvelrn FFnKaA×0˙KFaA×0˙ranF
172 170 150 171 syl2anc RLModABVAB=aBaseDFaA×0˙ranF
173 166 172 eqeltrrd RLModABVAB=aBaseDaranF
174 104 173 eqelssd RLModABVAB=ranF=BaseD
175 dff1o5 F:K1-1 ontoBaseDF:K1-1BaseDranF=BaseD
176 100 174 175 sylanbrc RLModABVAB=F:K1-1 ontoBaseD
177 95 16 islmim FLLMIsoDFLLMHomDF:K1-1 ontoBaseD
178 49 176 177 sylanbrc RLModABVAB=FLLMIsoD