Step |
Hyp |
Ref |
Expression |
1 |
|
pwsgrp.y |
|
2 |
|
pwsinvg.b |
|
3 |
|
pwssub.m |
|
4 |
|
pwssub.n |
|
5 |
|
simplr |
|
6 |
|
eqid |
|
7 |
|
simpll |
|
8 |
|
simprl |
|
9 |
1 6 2 7 5 8
|
pwselbas |
|
10 |
9
|
ffvelrnda |
|
11 |
|
fvexd |
|
12 |
9
|
feqmptd |
|
13 |
|
simprr |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
1 2 14 15
|
pwsinvg |
|
17 |
7 5 13 16
|
syl3anc |
|
18 |
1 6 2 7 5 13
|
pwselbas |
|
19 |
18
|
ffvelrnda |
|
20 |
18
|
feqmptd |
|
21 |
6 14
|
grpinvf |
|
22 |
21
|
ad2antrr |
|
23 |
22
|
feqmptd |
|
24 |
|
fveq2 |
|
25 |
19 20 23 24
|
fmptco |
|
26 |
17 25
|
eqtrd |
|
27 |
5 10 11 12 26
|
offval2 |
|
28 |
1
|
pwsgrp |
|
29 |
2 15
|
grpinvcl |
|
30 |
28 13 29
|
syl2an2r |
|
31 |
|
eqid |
|
32 |
|
eqid |
|
33 |
1 2 7 5 8 30 31 32
|
pwsplusgval |
|
34 |
6 31 14 3
|
grpsubval |
|
35 |
10 19 34
|
syl2anc |
|
36 |
35
|
mpteq2dva |
|
37 |
27 33 36
|
3eqtr4d |
|
38 |
2 32 15 4
|
grpsubval |
|
39 |
38
|
adantl |
|
40 |
5 10 19 12 20
|
offval2 |
|
41 |
37 39 40
|
3eqtr4d |
|