Metamath Proof Explorer


Theorem pwssub

Description: Subtraction in a group power. (Contributed by Mario Carneiro, 12-Jan-2015)

Ref Expression
Hypotheses pwsgrp.y Y = R 𝑠 I
pwsinvg.b B = Base Y
pwssub.m M = - R
pwssub.n - ˙ = - Y
Assertion pwssub R Grp I V F B G B F - ˙ G = F M f G

Proof

Step Hyp Ref Expression
1 pwsgrp.y Y = R 𝑠 I
2 pwsinvg.b B = Base Y
3 pwssub.m M = - R
4 pwssub.n - ˙ = - Y
5 simplr R Grp I V F B G B I V
6 eqid Base R = Base R
7 simpll R Grp I V F B G B R Grp
8 simprl R Grp I V F B G B F B
9 1 6 2 7 5 8 pwselbas R Grp I V F B G B F : I Base R
10 9 ffvelrnda R Grp I V F B G B x I F x Base R
11 fvexd R Grp I V F B G B x I inv g R G x V
12 9 feqmptd R Grp I V F B G B F = x I F x
13 simprr R Grp I V F B G B G B
14 eqid inv g R = inv g R
15 eqid inv g Y = inv g Y
16 1 2 14 15 pwsinvg R Grp I V G B inv g Y G = inv g R G
17 7 5 13 16 syl3anc R Grp I V F B G B inv g Y G = inv g R G
18 1 6 2 7 5 13 pwselbas R Grp I V F B G B G : I Base R
19 18 ffvelrnda R Grp I V F B G B x I G x Base R
20 18 feqmptd R Grp I V F B G B G = x I G x
21 6 14 grpinvf R Grp inv g R : Base R Base R
22 21 ad2antrr R Grp I V F B G B inv g R : Base R Base R
23 22 feqmptd R Grp I V F B G B inv g R = y Base R inv g R y
24 fveq2 y = G x inv g R y = inv g R G x
25 19 20 23 24 fmptco R Grp I V F B G B inv g R G = x I inv g R G x
26 17 25 eqtrd R Grp I V F B G B inv g Y G = x I inv g R G x
27 5 10 11 12 26 offval2 R Grp I V F B G B F + R f inv g Y G = x I F x + R inv g R G x
28 1 pwsgrp R Grp I V Y Grp
29 2 15 grpinvcl Y Grp G B inv g Y G B
30 28 13 29 syl2an2r R Grp I V F B G B inv g Y G B
31 eqid + R = + R
32 eqid + Y = + Y
33 1 2 7 5 8 30 31 32 pwsplusgval R Grp I V F B G B F + Y inv g Y G = F + R f inv g Y G
34 6 31 14 3 grpsubval F x Base R G x Base R F x M G x = F x + R inv g R G x
35 10 19 34 syl2anc R Grp I V F B G B x I F x M G x = F x + R inv g R G x
36 35 mpteq2dva R Grp I V F B G B x I F x M G x = x I F x + R inv g R G x
37 27 33 36 3eqtr4d R Grp I V F B G B F + Y inv g Y G = x I F x M G x
38 2 32 15 4 grpsubval F B G B F - ˙ G = F + Y inv g Y G
39 38 adantl R Grp I V F B G B F - ˙ G = F + Y inv g Y G
40 5 10 19 12 20 offval2 R Grp I V F B G B F M f G = x I F x M G x
41 37 39 40 3eqtr4d R Grp I V F B G B F - ˙ G = F M f G