Metamath Proof Explorer


Theorem pwstps

Description: A structure power of a topological space is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypothesis pwstps.y Y = R 𝑠 I
Assertion pwstps R TopSp I V Y TopSp

Proof

Step Hyp Ref Expression
1 pwstps.y Y = R 𝑠 I
2 eqid Scalar R = Scalar R
3 1 2 pwsval R TopSp I V Y = Scalar R 𝑠 I × R
4 eqid Scalar R 𝑠 I × R = Scalar R 𝑠 I × R
5 fvexd R TopSp I V Scalar R V
6 simpr R TopSp I V I V
7 fconst6g R TopSp I × R : I TopSp
8 7 adantr R TopSp I V I × R : I TopSp
9 4 5 6 8 prdstps R TopSp I V Scalar R 𝑠 I × R TopSp
10 3 9 eqeltrd R TopSp I V Y TopSp