Database
BASIC STRUCTURES
Extensible structures
Definition of the structure product
pwsval
Next ⟩
pwsbas
Metamath Proof Explorer
Ascii
Unicode
Theorem
pwsval
Description:
Value of a structure power.
(Contributed by
Mario Carneiro
, 11-Jan-2015)
Ref
Expression
Hypotheses
pwsval.y
⊢
Y
=
R
↑
𝑠
I
pwsval.f
⊢
F
=
Scalar
⁡
R
Assertion
pwsval
⊢
R
∈
V
∧
I
∈
W
→
Y
=
F
⨉
𝑠
I
×
R
Proof
Step
Hyp
Ref
Expression
1
pwsval.y
⊢
Y
=
R
↑
𝑠
I
2
pwsval.f
⊢
F
=
Scalar
⁡
R
3
elex
⊢
R
∈
V
→
R
∈
V
4
elex
⊢
I
∈
W
→
I
∈
V
5
simpl
⊢
r
=
R
∧
i
=
I
→
r
=
R
6
5
fveq2d
⊢
r
=
R
∧
i
=
I
→
Scalar
⁡
r
=
Scalar
⁡
R
7
6
2
eqtr4di
⊢
r
=
R
∧
i
=
I
→
Scalar
⁡
r
=
F
8
id
⊢
i
=
I
→
i
=
I
9
sneq
⊢
r
=
R
→
r
=
R
10
xpeq12
⊢
i
=
I
∧
r
=
R
→
i
×
r
=
I
×
R
11
8
9
10
syl2anr
⊢
r
=
R
∧
i
=
I
→
i
×
r
=
I
×
R
12
7
11
oveq12d
⊢
r
=
R
∧
i
=
I
→
Scalar
⁡
r
⨉
𝑠
i
×
r
=
F
⨉
𝑠
I
×
R
13
df-pws
⊢
↑
𝑠
=
r
∈
V
,
i
∈
V
⟼
Scalar
⁡
r
⨉
𝑠
i
×
r
14
ovex
⊢
F
⨉
𝑠
I
×
R
∈
V
15
12
13
14
ovmpoa
⊢
R
∈
V
∧
I
∈
V
→
R
↑
𝑠
I
=
F
⨉
𝑠
I
×
R
16
3
4
15
syl2an
⊢
R
∈
V
∧
I
∈
W
→
R
↑
𝑠
I
=
F
⨉
𝑠
I
×
R
17
1
16
eqtrid
⊢
R
∈
V
∧
I
∈
W
→
Y
=
F
⨉
𝑠
I
×
R