Metamath Proof Explorer


Theorem pwsvscaval

Description: Scalar multiplication of a single coordinate in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015)

Ref Expression
Hypotheses pwsvscaval.y Y = R 𝑠 I
pwsvscaval.b B = Base Y
pwsvscaval.s · ˙ = R
pwsvscaval.t ˙ = Y
pwsvscaval.f F = Scalar R
pwsvscaval.k K = Base F
pwsvscaval.r φ R V
pwsvscaval.i φ I W
pwsvscaval.a φ A K
pwsvscaval.x φ X B
pwsvscaval.j φ J I
Assertion pwsvscaval φ A ˙ X J = A · ˙ X J

Proof

Step Hyp Ref Expression
1 pwsvscaval.y Y = R 𝑠 I
2 pwsvscaval.b B = Base Y
3 pwsvscaval.s · ˙ = R
4 pwsvscaval.t ˙ = Y
5 pwsvscaval.f F = Scalar R
6 pwsvscaval.k K = Base F
7 pwsvscaval.r φ R V
8 pwsvscaval.i φ I W
9 pwsvscaval.a φ A K
10 pwsvscaval.x φ X B
11 pwsvscaval.j φ J I
12 1 2 3 4 5 6 7 8 9 10 pwsvscafval φ A ˙ X = I × A · ˙ f X
13 12 fveq1d φ A ˙ X J = I × A · ˙ f X J
14 eqid Base R = Base R
15 1 14 2 7 8 10 pwselbas φ X : I Base R
16 15 ffnd φ X Fn I
17 eqidd φ J I X J = X J
18 8 9 16 17 ofc1 φ J I I × A · ˙ f X J = A · ˙ X J
19 11 18 mpdan φ I × A · ˙ f X J = A · ˙ X J
20 13 19 eqtrd φ A ˙ X J = A · ˙ X J