Metamath Proof Explorer


Theorem pwsxms

Description: A power of an extended metric space is an extended metric space. (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypothesis pwsms.y Y = R 𝑠 I
Assertion pwsxms R ∞MetSp I Fin Y ∞MetSp

Proof

Step Hyp Ref Expression
1 pwsms.y Y = R 𝑠 I
2 eqid Scalar R = Scalar R
3 1 2 pwsval R ∞MetSp I Fin Y = Scalar R 𝑠 I × R
4 fvexd R ∞MetSp I Fin Scalar R V
5 simpr R ∞MetSp I Fin I Fin
6 fconst6g R ∞MetSp I × R : I ∞MetSp
7 6 adantr R ∞MetSp I Fin I × R : I ∞MetSp
8 eqid Scalar R 𝑠 I × R = Scalar R 𝑠 I × R
9 8 prdsxms Scalar R V I Fin I × R : I ∞MetSp Scalar R 𝑠 I × R ∞MetSp
10 4 5 7 9 syl3anc R ∞MetSp I Fin Scalar R 𝑠 I × R ∞MetSp
11 3 10 eqeltrd R ∞MetSp I Fin Y ∞MetSp