Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
pwtp
Next ⟩
pwpwpw0
Metamath Proof Explorer
Ascii
Unicode
Theorem
pwtp
Description:
The power set of an unordered triple.
(Contributed by
Mario Carneiro
, 2-Jul-2016)
Ref
Expression
Assertion
pwtp
⊢
𝒫
A
B
C
=
∅
A
∪
B
A
B
∪
C
A
C
∪
B
C
A
B
C
Proof
Step
Hyp
Ref
Expression
1
velpw
⊢
x
∈
𝒫
A
B
C
↔
x
⊆
A
B
C
2
elun
⊢
x
∈
∅
A
∪
B
A
B
↔
x
∈
∅
A
∨
x
∈
B
A
B
3
vex
⊢
x
∈
V
4
3
elpr
⊢
x
∈
∅
A
↔
x
=
∅
∨
x
=
A
5
3
elpr
⊢
x
∈
B
A
B
↔
x
=
B
∨
x
=
A
B
6
4
5
orbi12i
⊢
x
∈
∅
A
∨
x
∈
B
A
B
↔
x
=
∅
∨
x
=
A
∨
x
=
B
∨
x
=
A
B
7
2
6
bitri
⊢
x
∈
∅
A
∪
B
A
B
↔
x
=
∅
∨
x
=
A
∨
x
=
B
∨
x
=
A
B
8
elun
⊢
x
∈
C
A
C
∪
B
C
A
B
C
↔
x
∈
C
A
C
∨
x
∈
B
C
A
B
C
9
3
elpr
⊢
x
∈
C
A
C
↔
x
=
C
∨
x
=
A
C
10
3
elpr
⊢
x
∈
B
C
A
B
C
↔
x
=
B
C
∨
x
=
A
B
C
11
9
10
orbi12i
⊢
x
∈
C
A
C
∨
x
∈
B
C
A
B
C
↔
x
=
C
∨
x
=
A
C
∨
x
=
B
C
∨
x
=
A
B
C
12
8
11
bitri
⊢
x
∈
C
A
C
∪
B
C
A
B
C
↔
x
=
C
∨
x
=
A
C
∨
x
=
B
C
∨
x
=
A
B
C
13
7
12
orbi12i
⊢
x
∈
∅
A
∪
B
A
B
∨
x
∈
C
A
C
∪
B
C
A
B
C
↔
x
=
∅
∨
x
=
A
∨
x
=
B
∨
x
=
A
B
∨
x
=
C
∨
x
=
A
C
∨
x
=
B
C
∨
x
=
A
B
C
14
elun
⊢
x
∈
∅
A
∪
B
A
B
∪
C
A
C
∪
B
C
A
B
C
↔
x
∈
∅
A
∪
B
A
B
∨
x
∈
C
A
C
∪
B
C
A
B
C
15
sstp
⊢
x
⊆
A
B
C
↔
x
=
∅
∨
x
=
A
∨
x
=
B
∨
x
=
A
B
∨
x
=
C
∨
x
=
A
C
∨
x
=
B
C
∨
x
=
A
B
C
16
13
14
15
3bitr4ri
⊢
x
⊆
A
B
C
↔
x
∈
∅
A
∪
B
A
B
∪
C
A
C
∪
B
C
A
B
C
17
1
16
bitri
⊢
x
∈
𝒫
A
B
C
↔
x
∈
∅
A
∪
B
A
B
∪
C
A
C
∪
B
C
A
B
C
18
17
eqriv
⊢
𝒫
A
B
C
=
∅
A
∪
B
A
B
∪
C
A
C
∪
B
C
A
B
C