Metamath Proof Explorer


Theorem pwtp

Description: The power set of an unordered triple. (Contributed by Mario Carneiro, 2-Jul-2016)

Ref Expression
Assertion pwtp 𝒫 A B C = A B A B C A C B C A B C

Proof

Step Hyp Ref Expression
1 velpw x 𝒫 A B C x A B C
2 elun x A B A B x A x B A B
3 vex x V
4 3 elpr x A x = x = A
5 3 elpr x B A B x = B x = A B
6 4 5 orbi12i x A x B A B x = x = A x = B x = A B
7 2 6 bitri x A B A B x = x = A x = B x = A B
8 elun x C A C B C A B C x C A C x B C A B C
9 3 elpr x C A C x = C x = A C
10 3 elpr x B C A B C x = B C x = A B C
11 9 10 orbi12i x C A C x B C A B C x = C x = A C x = B C x = A B C
12 8 11 bitri x C A C B C A B C x = C x = A C x = B C x = A B C
13 7 12 orbi12i x A B A B x C A C B C A B C x = x = A x = B x = A B x = C x = A C x = B C x = A B C
14 elun x A B A B C A C B C A B C x A B A B x C A C B C A B C
15 sstp x A B C x = x = A x = B x = A B x = C x = A C x = B C x = A B C
16 13 14 15 3bitr4ri x A B C x A B A B C A C B C A B C
17 1 16 bitri x 𝒫 A B C x A B A B C A C B C A B C
18 17 eqriv 𝒫 A B C = A B A B C A C B C A B C