Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Introduce the Axiom of Union
pwuncl
Next ⟩
iunpw
Metamath Proof Explorer
Ascii
Unicode
Theorem
pwuncl
Description:
Power classes are closed under union.
(Contributed by
AV
, 27-Feb-2024)
Ref
Expression
Assertion
pwuncl
⊢
A
∈
𝒫
X
∧
B
∈
𝒫
X
→
A
∪
B
∈
𝒫
X
Proof
Step
Hyp
Ref
Expression
1
unexg
⊢
A
∈
𝒫
X
∧
B
∈
𝒫
X
→
A
∪
B
∈
V
2
elpwi
⊢
A
∈
𝒫
X
→
A
⊆
X
3
elpwi
⊢
B
∈
𝒫
X
→
B
⊆
X
4
unss
⊢
A
⊆
X
∧
B
⊆
X
↔
A
∪
B
⊆
X
5
4
biimpi
⊢
A
⊆
X
∧
B
⊆
X
→
A
∪
B
⊆
X
6
2
3
5
syl2an
⊢
A
∈
𝒫
X
∧
B
∈
𝒫
X
→
A
∪
B
⊆
X
7
1
6
elpwd
⊢
A
∈
𝒫
X
∧
B
∈
𝒫
X
→
A
∪
B
∈
𝒫
X